Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez, César Ernesto  
dc.contributor.author
Goddard, J.  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Rufiner, Hugo Leonardo  
dc.date.available
2020-02-02T16:36:53Z  
dc.date.issued
2012-10  
dc.identifier.citation
Martínez, César Ernesto; Goddard, J.; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Bioinspired sparse spectro-temporal representation of speech for robust classification; Academic Press Ltd - Elsevier Science Ltd; Computer Speech And Language; 26; 5; 10-2012; 336-348  
dc.identifier.issn
0885-2308  
dc.identifier.uri
http://hdl.handle.net/11336/96495  
dc.description.abstract
In this work, a first approach to a robust phoneme recognition task by means of a biologically inspired feature extraction method is presented. The proposed technique provides an approximation to the speech signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from auditory spectrograms, and the Matching Pursuit algorithm to approximate the cortical activations. This provides a sparse coding with intrinsic noise robustness, which can be therefore exploited when using the system in adverse environments. The recognition task consisted in the classification of a set of 5 easily confused English phonemes, in both clean and noisy conditions. Multilayer perceptrons were trained as classifiers and the performance was compared to other classic and robust parameterizations: the auditory spectrogram, a probabilistic optimum filtering on Mel frequency cepstral coefficients and the perceptual linear prediction coefficients. Results showed a significant improvement in the recognition rate of clean and noisy phonemes by the cortical representation over these other parameterizations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
APPROXIMATED AUDITORY CORTICAL REPRESENTATION  
dc.subject
ROBUST PHONEME RECOGNITION  
dc.subject
SPARSE CODING  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bioinspired sparse spectro-temporal representation of speech for robust classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-01-29T19:19:25Z  
dc.journal.volume
26  
dc.journal.number
5  
dc.journal.pagination
336-348  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Martínez, César Ernesto. Centro de I+d En Señales; Argentina. Universidad Nacional de Entre Ríos; Argentina  
dc.description.fil
Fil: Goddard, J.. Universidad Autónoma Metropolitana - Iztapalapa; México  
dc.description.fil
Fil: Milone, Diego Humberto. Centro de I+d En Señales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Universidad Nacional de Entre Ríos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de I+d En Señales; Argentina  
dc.journal.title
Computer Speech And Language  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885230812000125  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csl.2012.02.002