Mostrar el registro sencillo del ítem
dc.contributor.author
Martínez, César Ernesto
dc.contributor.author
Goddard, J.
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Rufiner, Hugo Leonardo
dc.date.available
2020-02-02T16:36:53Z
dc.date.issued
2012-10
dc.identifier.citation
Martínez, César Ernesto; Goddard, J.; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Bioinspired sparse spectro-temporal representation of speech for robust classification; Academic Press Ltd - Elsevier Science Ltd; Computer Speech And Language; 26; 5; 10-2012; 336-348
dc.identifier.issn
0885-2308
dc.identifier.uri
http://hdl.handle.net/11336/96495
dc.description.abstract
In this work, a first approach to a robust phoneme recognition task by means of a biologically inspired feature extraction method is presented. The proposed technique provides an approximation to the speech signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from auditory spectrograms, and the Matching Pursuit algorithm to approximate the cortical activations. This provides a sparse coding with intrinsic noise robustness, which can be therefore exploited when using the system in adverse environments. The recognition task consisted in the classification of a set of 5 easily confused English phonemes, in both clean and noisy conditions. Multilayer perceptrons were trained as classifiers and the performance was compared to other classic and robust parameterizations: the auditory spectrogram, a probabilistic optimum filtering on Mel frequency cepstral coefficients and the perceptual linear prediction coefficients. Results showed a significant improvement in the recognition rate of clean and noisy phonemes by the cortical representation over these other parameterizations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Ltd - Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
APPROXIMATED AUDITORY CORTICAL REPRESENTATION
dc.subject
ROBUST PHONEME RECOGNITION
dc.subject
SPARSE CODING
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Bioinspired sparse spectro-temporal representation of speech for robust classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-01-29T19:19:25Z
dc.journal.volume
26
dc.journal.number
5
dc.journal.pagination
336-348
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Martínez, César Ernesto. Centro de I+d En Señales; Argentina. Universidad Nacional de Entre Ríos; Argentina
dc.description.fil
Fil: Goddard, J.. Universidad Autónoma Metropolitana - Iztapalapa; México
dc.description.fil
Fil: Milone, Diego Humberto. Centro de I+d En Señales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Universidad Nacional de Entre Ríos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de I+d En Señales; Argentina
dc.journal.title
Computer Speech And Language
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885230812000125
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csl.2012.02.002
Archivos asociados