Mostrar el registro sencillo del ítem

dc.contributor.author
Calvo Olivares, Romina Daniela  
dc.contributor.author
Rivera, Selva Soledad  
dc.contributor.author
Núñez Mc Leod, Jorge Eduardo  
dc.date.available
2020-01-30T20:55:50Z  
dc.date.issued
2018-03  
dc.identifier.citation
Calvo Olivares, Romina Daniela; Rivera, Selva Soledad; Núñez Mc Leod, Jorge Eduardo; A novel qualitative prospective methodology to assess human error during accident sequences; Elsevier Science; Safety Science; 103; 3-2018; 137-152  
dc.identifier.issn
0925-7535  
dc.identifier.uri
http://hdl.handle.net/11336/96320  
dc.description.abstract
Numerous theoretical models and techniques to assess human error were developed since the 60's. Most of these models were developed for the nuclear, military, and aviation sectors. These methods have the following weaknesses that limit their use in industry: the lack of analysis of underlying causal cognitive mechanisms, need of retrospective data for implementation, strong dependence on expert judgment, focus on a particular type of error, and/or analysis of operator behaviour and decision-making without considering the role of the system in such decisions. The purpose of the present research is to develop a qualitative prospective methodology that does not depend exclusively on retrospective information, that does not require expert judgment for implementation and that allows predicting potential sequences of accidents before they occur. It has been proposed for new (or existent) small and medium- scale facilities, whose processes are simple. To the best of our knowledge, a methodology that meets these requirements has not been reported in literature thus far. The methodology proposed in this study was applied to the methanol storage area of a biodiesel facility. It could predict potential sequences of accidents, through the analysis of information provided by different system devices and the study of the possible deviations of operators in decision-making. It also enabled the identification of the shortcomings in the human-machine interface and proposed an optimization of the current configuration.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ACCIDENT SEQUENCES  
dc.subject
HUMAN ERROR  
dc.subject
HUMAN RELIABILITY ASSESSMENT  
dc.subject
HUMAN-MACHINE INTERFACE  
dc.subject
QUALITATIVE PROSPECTIVE MODEL  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A novel qualitative prospective methodology to assess human error during accident sequences  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-01-29T22:35:10Z  
dc.journal.volume
103  
dc.journal.pagination
137-152  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Calvo Olivares, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina  
dc.description.fil
Fil: Rivera, Selva Soledad. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina  
dc.description.fil
Fil: Núñez Mc Leod, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentina  
dc.journal.title
Safety Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092575351730526X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ssci.2017.10.023