Mostrar el registro sencillo del ítem

dc.contributor.author
Reyes, Paula N.  
dc.contributor.author
Valencia, Felipe J.  
dc.contributor.author
Vega, Hector  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Rogan, José  
dc.contributor.author
Valdivia, J. A.  
dc.contributor.author
Kiwi, Miguel  
dc.date.available
2020-01-30T19:23:20Z  
dc.date.issued
2018-05  
dc.identifier.citation
Reyes, Paula N.; Valencia, Felipe J.; Vega, Hector; Ruestes, Carlos Javier; Rogan, José; et al.; The stability of hollow nanoparticles and the simulation temperature ramp; Royal Society of Chemistry; Inorganic Chemistry Frontiers; 5; 5; 5-2018; 1139-1144  
dc.identifier.issn
2052-1553  
dc.identifier.uri
http://hdl.handle.net/11336/96259  
dc.description.abstract
Hollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
sin keywords  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
The stability of hollow nanoparticles and the simulation temperature ramp  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-01-29T22:36:30Z  
dc.journal.volume
5  
dc.journal.number
5  
dc.journal.pagination
1139-1144  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Reyes, Paula N.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile  
dc.description.fil
Fil: Valencia, Felipe J.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile. Universidad Mayor; Chile  
dc.description.fil
Fil: Vega, Hector. Universidad de Chile; Chile  
dc.description.fil
Fil: Ruestes, Carlos Javier. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rogan, José. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile  
dc.description.fil
Fil: Valdivia, J. A.. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile  
dc.description.fil
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile  
dc.journal.title
Inorganic Chemistry Frontiers  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/C7QI00822H  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/QI/C7QI00822H