Mostrar el registro sencillo del ítem

dc.contributor.author
Gaffney, Rowan  
dc.contributor.author
Porensky, Lauren  
dc.contributor.author
Gao, Feng  
dc.contributor.author
Irisarri, Jorge Gonzalo Nicolás  
dc.contributor.author
Durante, Martín  
dc.contributor.author
Derner, Justin  
dc.contributor.author
Augustine, David  
dc.date.available
2020-01-29T19:28:30Z  
dc.date.issued
2018-09  
dc.identifier.citation
Gaffney, Rowan; Porensky, Lauren; Gao, Feng; Irisarri, Jorge Gonzalo Nicolás; Durante, Martín; et al.; Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ; MDPI AG; Remote Sensing; 10; 9; 9-2018  
dc.identifier.issn
2072-4292  
dc.identifier.uri
http://hdl.handle.net/11336/96143  
dc.description.abstract
Monitoring of aboveground net primary production (ANPP) is critical for effective management of rangeland ecosystems but is problematic due to the vast extent of rangelands globally, and the high costs of ground-based measurements. Remote sensing of absorbed photosynthetically active radiation (APAR) can be used to predict ANPP, potentially offering an alternative means of quantifying ANPP at both high temporal and spatial resolution across broad spatial extents. The relationship between ANPP and APAR has often been quantified based on either spatial variation across a broad region or temporal variation at a location over time, but rarely both. Here we assess: (i) if the relationship between ANPP and APAR is consistent when evaluated across time and space; (ii) potential factors driving differences between temporal versus spatial models, and (iii) the magnitude of potential errors relating to space for time transformations in quantifying productivity. Using two complimentary ANPP datasets and remotely sensed data derived from MODIS and a Landsat/MODIS fusion data product, we find that slopes of spatial models are generally greater than slopes of temporal models. The abundance of plant species with different structural attributes, specifically the abundance of C4 shortgrasses with prostrate canopies versus taller, more productive C3 species with more vertically complex canopies, tended to vary more dramatically in space than over time. This difference in spatial versus temporal variation in these key plant functional groups appears to be the primary driver of differences in slopes among regression models. While the individual models revealed strong relationships between ANPP to APAR, the use of temporal models to predict variation in space (or vice versa) can increase error in remotely sensed predictions of ANPP.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI AG  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ANPP  
dc.subject
BIOMASS  
dc.subject
LANDSAT  
dc.subject
MODIS  
dc.subject
NDVI  
dc.subject
PLANT COMPOSITION  
dc.subject
RADIATION USE EFFICIENCY  
dc.subject
SPATIAL  
dc.subject
TEMPORAL  
dc.subject.classification
Ganadería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Using APAR to predict aboveground plant productivity in semi-aid rangelands: Spatial and temporal relationships differ  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-23T21:11:24Z  
dc.journal.volume
10  
dc.journal.number
9  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Gaffney, Rowan. United States Department of Agriculture. Agricultural Research Service; Argentina  
dc.description.fil
Fil: Porensky, Lauren. United States Department of Agriculture. Agricultural Research Service; Argentina  
dc.description.fil
Fil: Gao, Feng. United States Department of Agriculture. Agricultural Research Service; Argentina  
dc.description.fil
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Durante, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Concepción del Uruguay; Argentina  
dc.description.fil
Fil: Derner, Justin. United States Department of Agriculture. Agricultural Research Service; Argentina  
dc.description.fil
Fil: Augustine, David. United States Department of Agriculture. Agricultural Research Service; Argentina  
dc.journal.title
Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2072-4292/10/9/1474  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/rs10091474