Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach

Blanco, Paula DanielaIcon ; Metternicht, Graciela; del Valle, Hector FranciscoIcon
Fecha de publicación: 05/2009
Editorial: Taylor & Francis
Revista: International Journal of Remote Sensing
ISSN: 0143-1161
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Soil erosion is a key factor in land degradation processes in the sandy rangelands of the Peninsula Valdes of Patagonia, Argentina. Mapping landform and vegetation patterns is important for improving prediction, monitoring and planning of areas threatened by sand and shrub encroachment. This paper investigates the contribution of optical sensors, such as the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and textural measures derived from microwave Radarsat Advanced Synthetic Aperture Radar (ASAR) to their discrimination. An evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum and their synergistic use in an object-oriented approach. Image segmentation and object-oriented classifications were applied to the datasets. This required defining appropriate fuzzy membership functions for characterizing active and stabilized lineal dunes and the main vegetation classes. Improvements in the discrimination of active and stabilized dunes (vegetated by either scrub or grass) were achieved by using an object-oriented classification that integrated microwave and visible near-infrared (NIR) data. Changes in surface roughness caused by different vegetation types stabilizing the dunes affected the radar backscattering. Whereas Radarsat enabled a clear separation of scrub-stabilized dunes, Terra-ASTER showed superior performance in the cartography of grass-stabilized dunes. The synergistic use of microwave and visible and near-infrared (VNIR) data yielded a substantial increase in the discrimination and mapping of landform/vegetation patterns.
Palabras clave: ASTER , RADARSAT-1 , LANDFORM MAPPING , VEGETATION PATTERNS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.398Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/96074
DOI: http://dx.doi.org/10.1080/01431160802552785
URL: https://www.tandfonline.com/doi/full/10.1080/01431160802552785
Colecciones
Articulos(CCT-CENPAT)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CENPAT
Citación
Blanco, Paula Daniela; Metternicht, Graciela; del Valle, Hector Francisco; Improving the discrimination of vegetation and landform patterns in sandy rangelands: A synergistic approach; Taylor & Francis; International Journal of Remote Sensing; 30; 10; 5-2009; 2579-2605
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES