Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context

Yannibelli, Virginia DanielaIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 08/2012
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The aim of forming collaborative learning teams is that participating students acquire new knowledge and skills through the interaction with their peers. To reach this aim, teachers usually utilize a grouping criterion based on the students' roles and on forming well-balanced teams according to the roles of their members. However, the implementation of this criterion requires a considerable amount of time, effort and knowledge on the part of the teachers. In this paper, we propose a deterministic crowding evolutionary algorithm with the aim of assisting teachers when forming well-balanced collaborative learning teams. Considering a given number of students who must be divided into a given number of teams, the algorithm both designs different alternatives to divide students into teams and evaluates each alternative as regards the grouping criterion previously mentioned. This evaluation is carried out on the basis of knowledge of the students' roles. To analyze the performance of the proposed algorithm, we present the computational experiments developed on ten data sets with different levels of complexity. The obtained results are really promising since the algorithm has reached optimal solutions for the first four data sets and near-optimal solutions for the remaining six data sets.
Palabras clave: COLLABORATIVE LEARNING , EVOLUTIONARY ALGORITHMS , LEARNING TEAM FORMATION , ROLES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 307.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/96015
DOI: http://dx.doi.org/10.1016/j.eswa.2012.01.195
URL: https://www.sciencedirect.com/science/article/pii/S0957417412002230
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A deterministic crowding evolutionary algorithm to form learning teams in a collaborative learning context; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 10; 8-2012; 8584-8592
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES