Artículo
Hexosamine pathway regulates StarD7 expression in JEG-3 cells
Flores Martín, Jésica Belén
; Reyna, Luciana
; Cruz del Puerto, Mariano Matias Arzud
; Rojas, María L.; Panzetta-Dutari, Graciela Maria del Valle
; Genti de Raimondi, Susana
Fecha de publicación:
12/2018
Editorial:
Springer
Revista:
Molecular Biology Reports
ISSN:
0301-4851
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
StarD7 is a lipid binding protein involved in the delivery of phosphatidylcholine to the mitochondria whose promoter is activated by Wnt/β-catenin signaling. Although the majority of glucose enters glycolysis, ~ 2–5% of it can be metabolized via the hexosamine biosynthetic pathway (HBP). Considering that HBP has been implicated in the regulation of β-catenin we explored if changes in glucose levels modulate StarD7 expression by the HBP in trophoblast cells. We found an increase in StarD7 as well as in β-catenin expression following high-glucose (25 mM) treatment in JEG-3 cells; these effects were abolished in the presence of HBP inhibitors. Moreover, since HBP is able to promote unfolded protein response (UPR) the protein levels of GRP78, Ire1α, calnexin, p-eIF2α and total eIF2α as well as XBP1 mRNA was measured. Our results indicate that a diminution in glucose concentration leads to a decrease in StarD7 expression and an increase in the UPR markers: GRP78 and Ire1α. Conversely, an increase in glucose is associated to high StarD7 levels and low GRP78 expression, phospho-eIF2α and XBP1 splicing, although Ire1α remains high when cells are restored to high glucose. Taken together these findings indicate that glucose modulates StarD7 and β-catenin expression through the HBP associated to UPR, suggesting the existence of a link between UPR and HBP in trophoblast cells. This is the first study reporting the effects of glucose on StarD7 in trophoblast cells. These data highlight the importance to explore the role of StarD7 in placenta disorders related to nutrient availability.
Palabras clave:
HEXOSAMINE PATHWAY
,
JEG-3 CELLS
,
STARD7
,
START DOMAIN
,
UPR
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIBICI)
Articulos de CENTRO DE INV.EN BIOQUI.CLINICA E INMUNOLOGIA
Articulos de CENTRO DE INV.EN BIOQUI.CLINICA E INMUNOLOGIA
Citación
Flores Martín, Jésica Belén; Reyna, Luciana; Cruz del Puerto, Mariano Matias Arzud; Rojas, María L.; Panzetta-Dutari, Graciela Maria del Valle; et al.; Hexosamine pathway regulates StarD7 expression in JEG-3 cells; Springer; Molecular Biology Reports; 45; 6; 12-2018; 2593-2600
Compartir
Altmétricas