Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Semantic analysis on faces using deep neural networks

Pellejero, Nicolas Federico; Grinblat, Guillermo LuisIcon ; Uzal, Lucas CésarIcon
Fecha de publicación: 03/2018
Editorial: Asociación Española de Inteligencia Artificial
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

 
En este trabajo se aborda el problema de reconocimiento y clasificación de Expresiones Faciales a partir de video. Actualmente existen excelentes resultados enfocados en entornos controlados, donde se encuentran expresiones faciales artificiales. En cambio, queda mucho por mejorar cuando se trata de entornos no controlados, en los cuales las variaciones de iluminación, ángulo a la cámara, encuadre del rostro, hacen que la poca cantidad de datos etiquetados disponibles sea un impedimento a la hora de entrenar modelos de aprendizaje automatizado. Para atacar esta dificultad se utilizó de forma innovadora la técnica Generative Adversarial Networks, que permite utilizar un gran cúmulo de imágenes no etiquetadas con un estilo de entrenamiento semi supervisado.
 
In this paper we address the problem of automatic emotion recognition and classification through video. Nowadays there are excellent results focused on lab-made datasets, with posed facial expressions. On the other hand there is room for a lot of improvement in the case of `in the wild' datasets, where light, face angle to the camera, etc. are taken into account. In these cases it could be very harmful to work with a small dataset. Currently, there are not big enough datasets of adequately labeled faces for the task.\\ We use Generative Adversarial Networks in order to train models in a semi-supervised fashion, generating realistic face images in the process, allowing the exploitation of a big cumulus of unlabeled face images.
 
Palabras clave: DEEP , EMOTION , LEARNING , RECOGNITION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.545Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/95795
URL: http://journal.iberamia.org/index.php/intartif/article/view/127
DOI: http://dx.doi.org/10.4114/intartif.vol21iss61pp14-29
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Pellejero, Nicolas Federico; Grinblat, Guillermo Luis; Uzal, Lucas César; Semantic analysis on faces using deep neural networks; Asociación Española de Inteligencia Artificial; Inteligencia Artificial; 21; 61; 3-2018; 14-29
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES