Mostrar el registro sencillo del ítem
dc.contributor.author
Layana, Carla
dc.contributor.author
Diambra, Luis Anibal
dc.date.available
2020-01-23T22:09:12Z
dc.date.issued
2011-10
dc.identifier.citation
Layana, Carla; Diambra, Luis Anibal; Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes; Public Library of Science; Plos One; 6; 10; 10-2011; 1-10
dc.identifier.issn
1932-6203
dc.identifier.uri
http://hdl.handle.net/11336/95759
dc.description.abstract
The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CIRCADIAN RHYTHMS
dc.subject
CYANOBACTERIUM
dc.subject
BIOINFORMATICS
dc.subject
MICROARRAYS ANALYSIS
dc.subject.classification
Biología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-01-22T19:53:55Z
dc.journal.volume
6
dc.journal.number
10
dc.journal.pagination
1-10
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Layana, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina
dc.description.fil
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Plos One
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026291
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0026291
Archivos asociados