Mostrar el registro sencillo del ítem

dc.contributor.author
Layana, Carla  
dc.contributor.author
Diambra, Luis Anibal  
dc.date.available
2020-01-23T22:09:12Z  
dc.date.issued
2011-10  
dc.identifier.citation
Layana, Carla; Diambra, Luis Anibal; Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes; Public Library of Science; Plos One; 6; 10; 10-2011; 1-10  
dc.identifier.issn
1932-6203  
dc.identifier.uri
http://hdl.handle.net/11336/95759  
dc.description.abstract
The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CIRCADIAN RHYTHMS  
dc.subject
CYANOBACTERIUM  
dc.subject
BIOINFORMATICS  
dc.subject
MICROARRAYS ANALYSIS  
dc.subject.classification
Biología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-01-22T19:53:55Z  
dc.journal.volume
6  
dc.journal.number
10  
dc.journal.pagination
1-10  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Layana, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina  
dc.description.fil
Fil: Diambra, Luis Anibal. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Plos One  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026291  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0026291