Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Split Clique Graph complexity

Alcón, Liliana GracielaIcon ; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, MarisaIcon
Fecha de publicación: 09/2013
Editorial: Elsevier Science
Revista: Theoretical Computer Science
ISSN: 0304-3975
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.
Palabras clave: CLIQUE GRAPHS , HELLY PROPERTY , NP-COMPLETE , SPLIT GRAPHS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1018.Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/95177
URL: https://www.sciencedirect.com/science/article/pii/S0304397513005367
DOI: http://dx.doi.org/10.1016/j.tcs.2013.07.020
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-42
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES