Artículo
A comparison of metaheuristics algorithms for combinatorial optimization problems. application to phase balancing in electric distribution systems
Fecha de publicación:
06/2011
Editorial:
Planta Piloto de Ingeniería Química
Revista:
Latin American Applied Research
ISSN:
0327-0793
e-ISSN:
1851-8796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Metaheuristics Algorithms are widely recognized as one of most practical approaches for Combinatorial Optimization Problems. This paper presents a comparison between two metaheuristics to solve a problem of Phase Balancing in Low Voltage Electric Distribution Systems. Among the most representative mono-objective metaheuristics, was selected Simulated Annealing, to compare with a different metaheuristic approach: Evolutionary Particle Swarm Optimization. In this work, both of them are extended to fuzzy domain to modeling a multiobjective optimization, by mean of a fuzzy fitness function. A simulation on a real system is presented, and advantages of Swarm approach are evidenced.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Schweickardt, Gustavo Alejandro; Miranda, V.; Wiman, G. ; A comparison of metaheuristics algorithms for combinatorial optimization problems. application to phase balancing in electric distribution systems; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 2; 6-2011; 113-120
Compartir