Mostrar el registro sencillo del ítem

dc.contributor.author
Gatti, Claudio David  
dc.contributor.author
Ramirez, Jose Miguel  
dc.contributor.author
Febbo, Mariano  
dc.contributor.author
Machado, Sebastián Pablo  
dc.date.available
2020-01-10T16:00:12Z  
dc.date.issued
2018-04-07  
dc.identifier.citation
Gatti, Claudio David; Ramirez, Jose Miguel; Febbo, Mariano; Machado, Sebastián Pablo; Multimodal piezoelectric device for energy harvesting from engine vibration; Mathematical Science Publ; Journal of Mechanics of Materials and Structures; 13; 1; 7-4-2018; 17-34  
dc.identifier.issn
1559-3959  
dc.identifier.uri
http://hdl.handle.net/11336/94299  
dc.description.abstract
In a conventional transport vehicle, only about 10% to 16% of the energy from the fuel is used to move it down the road. The rest of the energy is lost in the brakes, transmission, engine, accessories, rolling resistance, aerodynamic drag, and idle losses. Among all of these, the largest loss is the energy lost in the engine (approximately 63%), which is mostly wasted as vibration. Our work develops an energy harvesting device that is capable of collecting energy for different gear ratios in a car. For this reason, the structural design is oriented to create a harvesting structure with several resonant modes in a frequency bandwidth between 1600 rpm-4600 rpm, which was the range obtained through driving tests in a conventional diesel car. The harvesting device is based on a piezoelectric fiber composite beam with a high fatigue resistance placed in the middle of two mass-spring systems, which provide the multimodal character of the device. A one-dimensional analytical model based on a Lagrangian formulation is used to predict the dynamical behavior of the device. The equations provide a very good quantitative description of the system, which is also modeled with a three-dimensional finite element code (Abaqus) for numerical validation. Experimental tests are then carried out and compared with theoretical findings. The results show a very good agreement between both of them, revealing the multimodal nature of the device in the operating bandwidth, with a significant output power for different engine speeds, sufficient to feed low-power monitoring wireless systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Mathematical Science Publ  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ENGINES  
dc.subject
PIEZOELECTRIC MATERIALS  
dc.subject
SYSTEM RECOVERY  
dc.subject
VEHICLES  
dc.subject
VIBRATIONS  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Multimodal piezoelectric device for energy harvesting from engine vibration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T17:40:56Z  
dc.journal.volume
13  
dc.journal.number
1  
dc.journal.pagination
17-34  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Berkeley  
dc.description.fil
Fil: Gatti, Claudio David. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Ramirez, Jose Miguel. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Machado, Sebastián Pablo. Universidad Tecnológica Nacional; Argentina  
dc.journal.title
Journal of Mechanics of Materials and Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://msp.org/jomms/2018/13-1/p02.xhtml  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2140/jomms.2018.13.17