Mostrar el registro sencillo del ítem
dc.contributor.author
Simpkin, Adam J.
dc.contributor.author
Simkovic, Felix
dc.contributor.author
Thomas, Jens M. H.
dc.contributor.author
Savko, Martin
dc.contributor.author
Lebedev, Andrey
dc.contributor.author
Uski, Ville
dc.contributor.author
Ballard, Charles
dc.contributor.author
Wojdyr, Marcin
dc.contributor.author
Wu, Rui
dc.contributor.author
Sanishvili, Ruslan
dc.contributor.author
Xu, Yibin
dc.contributor.author
Lisa, María Natalia
dc.contributor.author
Buschiazzo, Alejandro
dc.contributor.author
Shepard, William
dc.contributor.author
Rigden, Daniel J.
dc.contributor.author
Keegana, Ronan M.
dc.date.available
2020-01-09T14:03:04Z
dc.date.issued
2018-07
dc.identifier.citation
Simpkin, Adam J.; Simkovic, Felix; Thomas, Jens M. H.; Savko, Martin; Lebedev, Andrey; et al.; SIMBAD: A sequence-independent molecularreplacement pipeline; International Union of Crystallography; Acta Crystallographica Section D: Structural Biology; 74; 7; 7-2018; 595-605
dc.identifier.issn
2059-7983
dc.identifier.uri
http://hdl.handle.net/11336/94106
dc.description.abstract
The conventional approach to finding structurally similar search models for use in molecular replacement (MR) is to use the sequence of the target to search against those of a set of known structures. Sequence similarity often correlates with structure similarity. Given sufficient similarity, a known structure correctly positioned in the target cell by the MR process can provide an approximation to the unknown phases of the target. An alternative approach to identifying homologous structures suitable for MR is to exploit the measured data directly, comparing the lattice parameters or the experimentally derived structure-factor amplitudes with those of known structures. Here, SIMBAD, a new sequenceindependent MR pipeline which implements these approaches, is presented. SIMBAD can identify cases of contaminant crystallization and other mishaps such as mistaken identity (swapped crystallization trays), as well as solving unsequenced targets and providing a brute-force approach where sequencedependent search-model identification may be nontrivial, for example because of conformational diversity among identifiable homologues. The program implements a three-step pipeline to efficiently identify a suitable search model in a database of known structures. The first step performs a lattice-parameter search against the entire Protein Data Bank (PDB), rapidly determining whether or not a homologue exists in the same crystal form. The second step is designed to screen the target data for the presence of a crystallized contaminant, a not uncommon occurrence in macromolecular crystallography. Solving structures with MR in such cases can remain problematic for many years, since the search models, which are assumed to be similar to the structure of interest, are not necessarily related to the structures that have actually crystallized. To cater for this eventuality, SIMBAD rapidly screens the data against a database of known contaminant structures. Where the first two steps fail to yield a solution, a final step in SIMBAD can be invoked to perform a brute-force search of a nonredundant PDB database provided by the MoRDa MR software. Through early-access usage of SIMBAD, this approach has solved novel cases that have otherwise proved difficult to solve.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
International Union of Crystallography
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONTAMINANT
dc.subject
LATTICE SEARCH
dc.subject
MOLECULAR REPLACEMENT PIPELINE
dc.subject
SIMBAD
dc.subject
STRUCTURE SOLUTION
dc.subject.classification
Bioquímica y Biología Molecular
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
SIMBAD: A sequence-independent molecularreplacement pipeline
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-21T19:58:40Z
dc.journal.volume
74
dc.journal.number
7
dc.journal.pagination
595-605
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Simpkin, Adam J.. University of Liverpool; Reino Unido. Soleil Synchrotron;
dc.description.fil
Fil: Simkovic, Felix. University of Liverpool; Reino Unido
dc.description.fil
Fil: Thomas, Jens M. H.. University of Liverpool; Reino Unido
dc.description.fil
Fil: Savko, Martin. Soleil Synchrotron;
dc.description.fil
Fil: Lebedev, Andrey. Rutherford Appleton Laboratory;
dc.description.fil
Fil: Uski, Ville. Rutherford Appleton Laboratory;
dc.description.fil
Fil: Ballard, Charles. Rutherford Appleton Laboratory;
dc.description.fil
Fil: Wojdyr, Marcin. Global Phasing Ltd; . Rutherford Appleton Laboratory;
dc.description.fil
Fil: Wu, Rui. Weill Cornell Medicine Feil Family Brain &
dc.description.fil
Fil: Sanishvili, Ruslan. The Advanced Photon Source;
dc.description.fil
Fil: Xu, Yibin. Walter And Eliza Hall Institute Of Medical Research; Australia. University of Melbourne; Australia
dc.description.fil
Fil: Lisa, María Natalia. Instituto Pasteur de Montevideo; Uruguay. Instituto de Biología Molecular y Celular de Rosario; Argentina
dc.description.fil
Fil: Buschiazzo, Alejandro. Instituto Pasteur de Montevideo; Uruguay
dc.description.fil
Fil: Shepard, William. Soleil Synchrotron;
dc.description.fil
Fil: Rigden, Daniel J.. University of Liverpool; Reino Unido
dc.description.fil
Fil: Keegana, Ronan M.. Rutherford Appleton Laboratory;
dc.journal.title
Acta Crystallographica Section D: Structural Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1107/S2059798318005752
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://scripts.iucr.org/cgi-bin/paper?S2059798318005752
Archivos asociados