Mostrar el registro sencillo del ítem

dc.contributor.author
Simpkin, Adam J.  
dc.contributor.author
Simkovic, Felix  
dc.contributor.author
Thomas, Jens M. H.  
dc.contributor.author
Savko, Martin  
dc.contributor.author
Lebedev, Andrey  
dc.contributor.author
Uski, Ville  
dc.contributor.author
Ballard, Charles  
dc.contributor.author
Wojdyr, Marcin  
dc.contributor.author
Wu, Rui  
dc.contributor.author
Sanishvili, Ruslan  
dc.contributor.author
Xu, Yibin  
dc.contributor.author
Lisa, María Natalia  
dc.contributor.author
Buschiazzo, Alejandro  
dc.contributor.author
Shepard, William  
dc.contributor.author
Rigden, Daniel J.  
dc.contributor.author
Keegana, Ronan M.  
dc.date.available
2020-01-09T14:03:04Z  
dc.date.issued
2018-07  
dc.identifier.citation
Simpkin, Adam J.; Simkovic, Felix; Thomas, Jens M. H.; Savko, Martin; Lebedev, Andrey; et al.; SIMBAD: A sequence-independent molecularreplacement pipeline; International Union of Crystallography; Acta Crystallographica Section D: Structural Biology; 74; 7; 7-2018; 595-605  
dc.identifier.issn
2059-7983  
dc.identifier.uri
http://hdl.handle.net/11336/94106  
dc.description.abstract
The conventional approach to finding structurally similar search models for use in molecular replacement (MR) is to use the sequence of the target to search against those of a set of known structures. Sequence similarity often correlates with structure similarity. Given sufficient similarity, a known structure correctly positioned in the target cell by the MR process can provide an approximation to the unknown phases of the target. An alternative approach to identifying homologous structures suitable for MR is to exploit the measured data directly, comparing the lattice parameters or the experimentally derived structure-factor amplitudes with those of known structures. Here, SIMBAD, a new sequenceindependent MR pipeline which implements these approaches, is presented. SIMBAD can identify cases of contaminant crystallization and other mishaps such as mistaken identity (swapped crystallization trays), as well as solving unsequenced targets and providing a brute-force approach where sequencedependent search-model identification may be nontrivial, for example because of conformational diversity among identifiable homologues. The program implements a three-step pipeline to efficiently identify a suitable search model in a database of known structures. The first step performs a lattice-parameter search against the entire Protein Data Bank (PDB), rapidly determining whether or not a homologue exists in the same crystal form. The second step is designed to screen the target data for the presence of a crystallized contaminant, a not uncommon occurrence in macromolecular crystallography. Solving structures with MR in such cases can remain problematic for many years, since the search models, which are assumed to be similar to the structure of interest, are not necessarily related to the structures that have actually crystallized. To cater for this eventuality, SIMBAD rapidly screens the data against a database of known contaminant structures. Where the first two steps fail to yield a solution, a final step in SIMBAD can be invoked to perform a brute-force search of a nonredundant PDB database provided by the MoRDa MR software. Through early-access usage of SIMBAD, this approach has solved novel cases that have otherwise proved difficult to solve.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Union of Crystallography  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONTAMINANT  
dc.subject
LATTICE SEARCH  
dc.subject
MOLECULAR REPLACEMENT PIPELINE  
dc.subject
SIMBAD  
dc.subject
STRUCTURE SOLUTION  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
SIMBAD: A sequence-independent molecularreplacement pipeline  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-21T19:58:40Z  
dc.journal.volume
74  
dc.journal.number
7  
dc.journal.pagination
595-605  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Simpkin, Adam J.. University of Liverpool; Reino Unido. Soleil Synchrotron;  
dc.description.fil
Fil: Simkovic, Felix. University of Liverpool; Reino Unido  
dc.description.fil
Fil: Thomas, Jens M. H.. University of Liverpool; Reino Unido  
dc.description.fil
Fil: Savko, Martin. Soleil Synchrotron;  
dc.description.fil
Fil: Lebedev, Andrey. Rutherford Appleton Laboratory;  
dc.description.fil
Fil: Uski, Ville. Rutherford Appleton Laboratory;  
dc.description.fil
Fil: Ballard, Charles. Rutherford Appleton Laboratory;  
dc.description.fil
Fil: Wojdyr, Marcin. Global Phasing Ltd; . Rutherford Appleton Laboratory;  
dc.description.fil
Fil: Wu, Rui. Weill Cornell Medicine Feil Family Brain &  
dc.description.fil
Fil: Sanishvili, Ruslan. The Advanced Photon Source;  
dc.description.fil
Fil: Xu, Yibin. Walter And Eliza Hall Institute Of Medical Research; Australia. University of Melbourne; Australia  
dc.description.fil
Fil: Lisa, María Natalia. Instituto Pasteur de Montevideo; Uruguay. Instituto de Biología Molecular y Celular de Rosario; Argentina  
dc.description.fil
Fil: Buschiazzo, Alejandro. Instituto Pasteur de Montevideo; Uruguay  
dc.description.fil
Fil: Shepard, William. Soleil Synchrotron;  
dc.description.fil
Fil: Rigden, Daniel J.. University of Liverpool; Reino Unido  
dc.description.fil
Fil: Keegana, Ronan M.. Rutherford Appleton Laboratory;  
dc.journal.title
Acta Crystallographica Section D: Structural Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1107/S2059798318005752  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://scripts.iucr.org/cgi-bin/paper?S2059798318005752