Mostrar el registro sencillo del ítem

dc.contributor.author
Gurdo, Nicolás  
dc.contributor.author
Novelli Poisson, Guido Fernando  
dc.contributor.author
Juárez, Angela Beatriz  
dc.contributor.author
Rios, Maria del Carmen  
dc.contributor.author
Galvagno, Miguel Angel  
dc.date.available
2020-01-08T21:51:33Z  
dc.date.issued
2018-09  
dc.identifier.citation
Gurdo, Nicolás; Novelli Poisson, Guido Fernando; Juárez, Angela Beatriz; Rios, Maria del Carmen; Galvagno, Miguel Angel; Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability; Wiley Blackwell Publishing, Inc; Journal of Applied Microbiology; 125; 3; 9-2018; 766-776  
dc.identifier.issn
1364-5072  
dc.identifier.uri
http://hdl.handle.net/11336/94079  
dc.description.abstract
Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l−1) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l−1 of acetic acid when compared to parental strain Y8. Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2O2 and not O2˙ is a key condition for multiple stress tolerance in S. cerevisiae.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ACETIC ACID  
dc.subject
ADAPTIVE EVOLUTION  
dc.subject
ANTIOXIDATIVE ENZYMES  
dc.subject
BIOETHANOL 2G PRODUCTION  
dc.subject
MULTIPLE TOLERANCE  
dc.subject
ROBUSTNESS  
dc.subject
SACCHAROMYCES CEREVISIAE  
dc.subject
YEAST  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-24T19:06:08Z  
dc.journal.volume
125  
dc.journal.number
3  
dc.journal.pagination
766-776  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Gurdo, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Novelli Poisson, Guido Fernando. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Juárez, Angela Beatriz. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Rios de Molina, M.C.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Galvagno, Miguel Angel. Universidad de Buenos Aires; Argentina  
dc.journal.title
Journal of Applied Microbiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://sfamjournals.onlinelibrary.wiley.com/doi/abs/10.1111/jam.13917  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1111/jam.13917