Mostrar el registro sencillo del ítem
dc.contributor.author
Leale, Guillermo
dc.contributor.author
Baya, Ariel Emilio
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Granitto, Pablo Miguel
dc.contributor.author
Stegmayer, Georgina
dc.date.available
2020-01-08T20:30:41Z
dc.date.issued
2018-01
dc.identifier.citation
Leale, Guillermo; Baya, Ariel Emilio; Milone, Diego Humberto; Granitto, Pablo Miguel; Stegmayer, Georgina; Inferring Unknown Biological Function by Integration of GO Annotations and Gene Expression Data; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 15; 1; 1-2018; 168-180
dc.identifier.issn
1545-5963
dc.identifier.uri
http://hdl.handle.net/11336/94015
dc.description.abstract
Characterizing genes with semantic information is an important process regarding the description of gene products. In spite that complete genomes of many organisms have been already sequenced, the biological functions of all of their genes are still unknown. Since experimentally studying the functions of those genes, one by one, would be unfeasible, new computational methods for gene functions inference are needed. We present here a novel computational approach for inferring biological function for a set of genes with previously unknown function, given a set of genes with well-known information. This approach is based on the premise that genes with similar behaviour should be grouped together. This is known as the guilt-by-association principle. Thus, it is possible to take advantage of clustering techniques to obtain groups of unknown genes that are co-clustered with genes that have well-known semantic information (GO annotations). Meaningful knowledge to infer unknown semantic information can therefore be provided by these well-known genes. We provide a method to explore the potential function of new genes according to those currently annotated. The results obtained indicate that the proposed approach could be a useful and effective tool when used by biologists to guide the inference of biological functions for recently discovered genes. Our work sets an important landmark in the field of identifying unknown gene functions through clustering, using an external source of biological input. A simple web interface to this proposal can be found at http://fich.unl.edu.ar/sinc/webdemo/gamma-am/.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IEEE Computer Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BIOINFORMATICS
dc.subject
CLUSTERING
dc.subject
GENE ONTOLOGY
dc.subject
MACHINE LEARNING
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Inferring Unknown Biological Function by Integration of GO Annotations and Gene Expression Data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-28T19:30:53Z
dc.journal.volume
15
dc.journal.number
1
dc.journal.pagination
168-180
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Leale, G.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Granitto, P.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Stegmayer, G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Ieee-acm Transactions On Computational Biology And Bioinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7586096/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TCBB.2016.2615960
Archivos asociados