Mostrar el registro sencillo del ítem

dc.contributor.author
Leale, Guillermo  
dc.contributor.author
Baya, Ariel Emilio  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Granitto, Pablo Miguel  
dc.contributor.author
Stegmayer, Georgina  
dc.date.available
2020-01-08T20:30:41Z  
dc.date.issued
2018-01  
dc.identifier.citation
Leale, Guillermo; Baya, Ariel Emilio; Milone, Diego Humberto; Granitto, Pablo Miguel; Stegmayer, Georgina; Inferring Unknown Biological Function by Integration of GO Annotations and Gene Expression Data; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 15; 1; 1-2018; 168-180  
dc.identifier.issn
1545-5963  
dc.identifier.uri
http://hdl.handle.net/11336/94015  
dc.description.abstract
Characterizing genes with semantic information is an important process regarding the description of gene products. In spite that complete genomes of many organisms have been already sequenced, the biological functions of all of their genes are still unknown. Since experimentally studying the functions of those genes, one by one, would be unfeasible, new computational methods for gene functions inference are needed. We present here a novel computational approach for inferring biological function for a set of genes with previously unknown function, given a set of genes with well-known information. This approach is based on the premise that genes with similar behaviour should be grouped together. This is known as the guilt-by-association principle. Thus, it is possible to take advantage of clustering techniques to obtain groups of unknown genes that are co-clustered with genes that have well-known semantic information (GO annotations). Meaningful knowledge to infer unknown semantic information can therefore be provided by these well-known genes. We provide a method to explore the potential function of new genes according to those currently annotated. The results obtained indicate that the proposed approach could be a useful and effective tool when used by biologists to guide the inference of biological functions for recently discovered genes. Our work sets an important landmark in the field of identifying unknown gene functions through clustering, using an external source of biological input. A simple web interface to this proposal can be found at http://fich.unl.edu.ar/sinc/webdemo/gamma-am/.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE Computer Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOINFORMATICS  
dc.subject
CLUSTERING  
dc.subject
GENE ONTOLOGY  
dc.subject
MACHINE LEARNING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Inferring Unknown Biological Function by Integration of GO Annotations and Gene Expression Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-28T19:30:53Z  
dc.journal.volume
15  
dc.journal.number
1  
dc.journal.pagination
168-180  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Leale, G.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Granitto, P.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Stegmayer, G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Ieee-acm Transactions On Computational Biology And Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7586096/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TCBB.2016.2615960