Mostrar el registro sencillo del ítem

dc.contributor.author
Bartolo, Rossella  
dc.contributor.author
de Napoli, Pablo Luis  
dc.contributor.author
Salvatore, Addolorata  
dc.date.available
2020-01-07T18:57:52Z  
dc.date.issued
2018-08  
dc.identifier.citation
Bartolo, Rossella; de Napoli, Pablo Luis; Salvatore, Addolorata; Infinitely many solutions for non-local problems with broken symmetry; De Gruyter; Advances in Nonlinear Analysis; 7; 3; 8-2018; 353-364  
dc.identifier.issn
2191-950X  
dc.identifier.uri
http://hdl.handle.net/11336/93868  
dc.description.abstract
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem (Formula Presented) where s Ó (0, 1), n > 2s, is an open bounded domain of Rn with Lipschitz boundary ∂Ω, (-Δ)s is the nonlocal Laplacian operator, 2 < p < 2s and h Ó L2 (Ω). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FRACTIONAL LAPLACE OPERATOR  
dc.subject
PERTURBATIVE METHOD  
dc.subject
VARIATIONAL METHODS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Infinitely many solutions for non-local problems with broken symmetry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-04T18:38:11Z  
dc.journal.volume
7  
dc.journal.number
3  
dc.journal.pagination
353-364  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Bartolo, Rossella. Politecnico Di Bari; Italia  
dc.description.fil
Fil: de Napoli, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.; Argentina  
dc.description.fil
Fil: Salvatore, Addolorata. Università degli Studi di Bari; Italia  
dc.journal.title
Advances in Nonlinear Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/anona-2016-0106  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/anona.2018.7.issue-3/anona-2016-0106/anona-2016-0106.xml