Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Defant, Andreas  
dc.contributor.author
Sevilla Peris, Pablo  
dc.date.available
2020-01-07T18:45:03Z  
dc.date.issued
2014-06  
dc.identifier.citation
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-527  
dc.identifier.issn
2157-5045  
dc.identifier.uri
http://hdl.handle.net/11336/93858  
dc.description.abstract
The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Mathematical Sciences Publishers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BANACH SPACES  
dc.subject
VECTOR-VALUED DIRICHLET SERIES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-02T20:54:03Z  
dc.identifier.eissn
1948-206X  
dc.journal.volume
7  
dc.journal.number
2  
dc.journal.pagination
513-527  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Andreas Defant. Universidad de Oldenburg; Alemania  
dc.description.fil
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España  
dc.journal.title
Analysis and PDE  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2140/apde.2014.7.513