Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Defant, Andreas
dc.contributor.author
Sevilla Peris, Pablo
dc.date.available
2020-01-07T18:45:03Z
dc.date.issued
2014-06
dc.identifier.citation
Carando, Daniel Germán; Defant, Andreas; Sevilla Peris, Pablo; Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces; Mathematical Sciences Publishers; Analysis and PDE; 7; 2; 6-2014; 513-527
dc.identifier.issn
2157-5045
dc.identifier.uri
http://hdl.handle.net/11336/93858
dc.description.abstract
The Bohr-Bohnenblust-Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series ∑nann-s converges uniformly but not absolutely is less than or equal to 12, and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H1 equals 1/2. By a surprising fact of Bayart the same result holds true if H1 is replaced by any Hardy space H∞, 1 ≤ p <∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr's strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1-1=Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞.(X) equals 1-1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp.(X), 1 ≤ p < ∞.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Mathematical Sciences Publishers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BANACH SPACES
dc.subject
VECTOR-VALUED DIRICHLET SERIES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-02T20:54:03Z
dc.identifier.eissn
1948-206X
dc.journal.volume
7
dc.journal.number
2
dc.journal.pagination
513-527
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Andreas Defant. Universidad de Oldenburg; Alemania
dc.description.fil
Fil: Sevilla Peris, Pablo. Universidad Politécnica de Valencia; España
dc.journal.title
Analysis and PDE
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2140/apde.2014.7.513
Archivos asociados