Artículo
Theta lifts of Bianchi modular forms and applications to paramodularity
Fecha de publicación:
11/2014
Editorial:
Oxford University Press
Revista:
Journal of the London Mathematical Society
ISSN:
0024-6107
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer.
Palabras clave:
Bianchi modular forms
,
Theta lifting
,
Paramodularity Conjecture
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Berger, Tobias; Dembélé, Lassina; Pacetti, Ariel Martín; Şengün, Mehmet Haluk; Theta lifts of Bianchi modular forms and applications to paramodularity; Oxford University Press; Journal of the London Mathematical Society; 92; 2; 11-2014; 353-370
Compartir
Altmétricas