Artículo
Local Maximal Function and Weights in a General Setting
Fecha de publicación:
03/2014
Editorial:
Springer
Revista:
Mathematische Annalen
ISSN:
0025-5831
e-ISSN:
1432-1807
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a proper open set "omega" immersed in a metric space with the weak homogeneity property, and given a measure μ doubling on a certain family of balls lying “well inside” of "omega", we introduce a local maximal function and characterize the weights w for which it is bounded on L p("omega", wdμ) when 1 < p < ∞ and of weak type (1, 1). We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation "delta" mu = f , satisfied in an open proper subset "omega" of Rn. Here, the data f belongs to some weighted L p space that could allow functions to increase polynomially when approaching the boundary of "omega".
Palabras clave:
Local
,
Maximal
,
Weights
,
Boundedness
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Local Maximal Function and Weights in a General Setting; Springer; Mathematische Annalen; 358; 3; 3-2014; 609-628
Compartir
Altmétricas