Mostrar el registro sencillo del ítem

dc.contributor.author
Bertotto, M. Mercedes  
dc.contributor.author
Gastón, Analía  
dc.contributor.author
Rodríguez Batiller, María Jose  
dc.contributor.author
Calello, Pablo  
dc.date.available
2020-01-06T14:20:33Z  
dc.date.issued
2018-10  
dc.identifier.citation
Bertotto, M. Mercedes; Gastón, Analía; Rodríguez Batiller, María Jose; Calello, Pablo; Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis; Wiley Blackwell Publishing, Inc; Food Science & Nutrition; 6; 8; 10-2018; 2199-2209  
dc.identifier.issn
2048-7177  
dc.identifier.uri
http://hdl.handle.net/11336/93571  
dc.description.abstract
Dynamic mechanical analysis (DMA) was applied to measure the Tg of rice IRGA 424 at different moisture content values (9.3%–22.3% wet basis). To conduct temperature sweeps, the samples were heated at a rate of 2°C/min from 20 to 120°C keeping frequency to 1 Hz. Tg was measured both from the E″ peak temperature (Tgmidpoint) and from the tan (δ) peak temperature (Tgendset). Tgmidpoint and Tgendset increased from 31.8 to 86.6°C and 42.1 to 104.7°C, respectively, as moisture content decreased from 22.3 to 9.3%. Six models were tested for their ability to predict Tg as a function of the moisture content. As all residuals were normally distributed and homoskedastic, standard metrics were used to assess the fitted models. Goodness of fit by these models was established by comparing the coefficient of determination (R2), standard error of the estimate (SEE), and mean relative deviation (MRD). The Gordon–Taylor linearized equation was the most accurate in predicting Tg. To predict Tg from the moisture content of the rice samples, a new expression was proposed. For the conditions considered in this work, the developed equation satisfactorily predicts the Tg of rice IRGA 424 without needing prior linearization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
dynamic mechanical analysis  
dc.subject
food processing  
dc.subject
glass transition  
dc.subject
mathematical modeling  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Comparison of mathematical models with predict glass transition temperature of rice (cultivar IRGA 424) measured by dynamic mechanical analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-16T15:25:00Z  
dc.journal.volume
6  
dc.journal.number
8  
dc.journal.pagination
2199-2209  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bertotto, M. Mercedes. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentina  
dc.description.fil
Fil: Gastón, Analía. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Rodríguez Batiller, María Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina  
dc.description.fil
Fil: Calello, Pablo. Ministerio de Agricultura, Ganadería, Pesca y Alimento. Servicio Nacional de Sanidad y Calidad Agroalimentaria; Argentina  
dc.journal.title
Food Science & Nutrition  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://doi.wiley.com/10.1002/fsn3.785  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/fsn3.785