Mostrar el registro sencillo del ítem

dc.contributor.author
Spagnotto, Silvana Liz  
dc.contributor.author
Alvarez Pontoriero, Orlando  
dc.contributor.author
Folguera Telichevsky, Andres  
dc.date.available
2020-01-02T20:39:15Z  
dc.date.issued
2018-08  
dc.identifier.citation
Spagnotto, Silvana Liz; Alvarez Pontoriero, Orlando; Folguera Telichevsky, Andres; Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal; Birkhauser Verlag Ag; Pure And Applied Geophysics; 175; 8; 8-2018; 2575-2593  
dc.identifier.issn
0033-4553  
dc.identifier.uri
http://hdl.handle.net/11336/93314  
dc.description.abstract
An Mw 8.2 earthquake affected on September 8, 2017 the Cocos plate beneath the Caribbean plate next to the transform contact with the North American plate across the Tehuantepec gap, one of the two gaps that exist along the Mexican subduction zone offshore Chiapas. The epicenter occurred at a depth of 47 km and was associated with a highly steep normal fault parallel to the trench. The origin can be related to slab pull forces, dehydration processes and reactivation of outer rise faults. This earthquake produced positive changes in the Coulomb static stress, which would favor the development of thrust displacements along the interplate contact across the Tehuantepec gap instead of liberating tensions accumulated on it for decades. In the case that stresses were not released steadily in the future, a thrusting-related event with a magnitude of Mw 7.9 or higher could be expected after the September 8, 2017 Chiapas earthquake. However, the differential weight of the forearc offshore (that contains a region with a high positive gravity gradient) could inhibit rupture propagation to the coast precluding higher magnitudes. Combined and satellite only earth gravity field models show a highly heterogeneous density structure along the forearc of the North America-Caribbean plates and in particular at the studied zone. Maximum displacements in the rupture zone correlate to minimum gravity-derived anomalies showing a probable relationship between the differential weight of the forearc structure and the extensional faulting affecting the bending of the Cocos plate at depth. In this sense, variable sediment thicknesses over the forearc, and a high gravity gradient zone parallel to the trench in the outer forearc, could be reflecting physical heterogeneities that influence the propagation of the rupture zone. Additionally, to the north, a highly positive gradient signal related to the subducted Tehuantepec Fz projection beneath the North American plate marks the ending of the main slip patch acting as a barrier to the seismic rupture propagation. This event exemplifies (1) how extensional ruptures in the downgoing slab of a subduction zone can increment accumulated elastic strain across a seismic gap instead of liberating tensions, (2) that rupture propagation for this intraplate event was probably controlled (at shallow depths) by the density structure of the forearc, similarly to recent interplate earthquakes along the Chilean margin; (3) how a low gravity gradient signal and low density structures identified from the inversion model in the region of the outer forearc, where the normal stress increased after the main seismic event, suggest a higher risk of occurrence of a great megathrust earthquake.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHIAPAS EARTHQUAKE  
dc.subject
COULOMB STATIC STRESS  
dc.subject
EXTENSIONAL FAULTS  
dc.subject
SATELLITE GRAVIMETRY  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-23T21:36:24Z  
dc.journal.volume
175  
dc.journal.number
8  
dc.journal.pagination
2575-2593  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Spagnotto, Silvana Liz. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina  
dc.description.fil
Fil: Alvarez Pontoriero, Orlando. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Folguera Telichevsky, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina  
dc.journal.title
Pure And Applied Geophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00024-018-1962-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00024-018-1962-2