Artículo
Insights into gliadin supramolecular organization at digestive pH 3.0
Herrera, Maria Georgina
; Vazquez, Diego Sebastian; Sreij, R.; Drechsler, M.; Hertle, Y.; Hellweg, T.; Dodero, Veronica Isabel
Fecha de publicación:
01/05/2018
Editorial:
Elsevier Science
Revista:
Colloids and Surfaces B: Biointerfaces
ISSN:
0927-7765
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Alpha-gliadin is a highly immunogenic protein from wheat, which is associated with many human diseases, like celiac disease and non-celiac gluten sensitivity. Because of that, gliadin solution is subject to intense biomedical research. However, the physicochemical nature of the employed gliadin solution at physiological pH is not understood. Herein, we present a supramolecular evaluation of the alpha-gliadin protein in water at pH 3.0 by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and small-angle-.X-ray scattering (SAXS). We report that at 0.5 wt% concentration (0.1 mg/ml), gliadin is already a colloidal polydisperse system with an average hydrodynamic radius of 30 ± 10 nm. By cryo-TEM, we detected mainly large clusters. However, it was possible to visualise for the first time prolate oligomers of around 68 nm and 103 nm, minor and major axis, respectively. SAXS experiments support the existence of prolate/rod-like structures. At 1.5 wt% concentration gliadin dimers, small oligomers and large clusters coexist. The radius of gyration (Rg1) of gliadin dimer is 5.72 ± 0.23 nm with a dimer cross-section (Rc) of 1.63 nm, and an average length of around 19 nm, this suggests that gliadin dimers are formed longitudinally. Finally, our alpha-gliadin 3D model, obtained by ab initio prediction and analysed by molecular dynamics (MD), predicts that two surfaces prone to aggregation are exposed to the solvent, at the C-terminus. We hypothesise that this region may be involved in the dimerisation process of alpha-gliadin.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIFIB)
Articulos de INST.DE QUIMICA Y FISICO-QUIMICA BIOLOGICAS "PROF. ALEJANDRO C. PALADINI"
Articulos de INST.DE QUIMICA Y FISICO-QUIMICA BIOLOGICAS "PROF. ALEJANDRO C. PALADINI"
Citación
Herrera, Maria Georgina; Vazquez, Diego Sebastian; Sreij, R.; Drechsler, M.; Hertle, Y.; et al.; Insights into gliadin supramolecular organization at digestive pH 3.0; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 165; 1-5-2018; 363-370
Compartir
Altmétricas