Mostrar el registro sencillo del ítem

dc.contributor.author
Fongi, Guillermina  
dc.contributor.author
Maestripieri, Alejandra Laura  
dc.date.available
2019-12-27T04:17:25Z  
dc.date.issued
2009-11  
dc.identifier.citation
Fongi, Guillermina; Maestripieri, Alejandra Laura; Congruence of selfadjoint operators; Springer; Positivity; 13; 4; 11-2009; 759-770  
dc.identifier.issn
1385-1292  
dc.identifier.uri
http://hdl.handle.net/11336/93038  
dc.description.abstract
Given a bounded selfadjoint operator a in a Hilbert space H, the aim of this paper is to study the orbit of a, i.e., the set of operators which are congruent to a. We establish some necessary and sufficient conditions for an operator to be in the orbit of a. Also, the orbit of a selfadjoint operator with closed range is provided with a structure of differential manifold.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CONGRUENCE OF OPERATORS  
dc.subject
DIFFERENTIAL GEOMETRY  
dc.subject
SELFADJOINT OPERATORS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Congruence of selfadjoint operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-11-11T15:22:55Z  
dc.identifier.eissn
1572-9281  
dc.journal.volume
13  
dc.journal.number
4  
dc.journal.pagination
759-770  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina  
dc.journal.title
Positivity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11117-008-2267-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11117-008-2267-y