Mostrar el registro sencillo del ítem

dc.contributor.author
Fongi, Guillermina  
dc.contributor.author
Maestripieri, Alejandra Laura  
dc.date.available
2019-12-27T03:52:03Z  
dc.date.issued
2010-05  
dc.identifier.citation
Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-121  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/93030  
dc.description.abstract
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CONGRUENCE OF OPERATORS  
dc.subject
INDEFINITE METRIC SPACES  
dc.subject
SELFADJOINT OPERATORS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Positive decompositions of selfadjoint operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-11-11T15:22:40Z  
dc.journal.volume
67  
dc.journal.number
1  
dc.journal.pagination
109-121  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-010-1773-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-010-1773-z