Mostrar el registro sencillo del ítem
dc.contributor.author
Fongi, Guillermina
dc.contributor.author
Maestripieri, Alejandra Laura
dc.date.available
2019-12-27T03:52:03Z
dc.date.issued
2010-05
dc.identifier.citation
Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-121
dc.identifier.issn
0378-620X
dc.identifier.uri
http://hdl.handle.net/11336/93030
dc.description.abstract
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
CONGRUENCE OF OPERATORS
dc.subject
INDEFINITE METRIC SPACES
dc.subject
SELFADJOINT OPERATORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Positive decompositions of selfadjoint operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-11-11T15:22:40Z
dc.journal.volume
67
dc.journal.number
1
dc.journal.pagination
109-121
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Integral Equations and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-010-1773-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-010-1773-z
Archivos asociados