Artículo
Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy
Fecha de publicación:
04/2018
Editorial:
Elsevier Science
Revista:
Communications In Nonlinear Science And Numerical Simulation
ISSN:
1007-5704
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.
Palabras clave:
EPILEPSY
,
HYPOTHESIS TEST
,
PERMUTATION ENTROPY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Traversaro Varela, Francisco; Redelico, Francisco Oscar; Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 57; 4-2018; 388-401
Compartir
Altmétricas