Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

Traversaro Varela, FranciscoIcon ; Redelico, Francisco OscarIcon
Fecha de publicación: 04/2018
Editorial: Elsevier Science
Revista: Communications In Nonlinear Science And Numerical Simulation
ISSN: 1007-5704
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.
Palabras clave: EPILEPSY , HYPOTHESIS TEST , PERMUTATION ENTROPY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.106Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/92938
URL: http://linkinghub.elsevier.com/retrieve/pii/S1007570417303672
DOI: http://dx.doi.org/10.1016/j.cnsns.2017.10.013
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Traversaro Varela, Francisco; Redelico, Francisco Oscar; Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy; Elsevier Science; Communications In Nonlinear Science And Numerical Simulation; 57; 4-2018; 388-401
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES