Artículo
Asking Infinite Voters ‘Who is a J?’: Group Identification Problems in ℕ
Fecha de publicación:
29/03/2019
Editorial:
Springer
Revista:
Journal Of Classification
ISSN:
0176-4268
e-ISSN:
1432-1343
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We analyze the problem of classifying individuals in a group N taking into account their opinions about which of them should belong to a specific subgroup N ′ ⊆ N, in the case that |N| > ∞. We show that this problem is relevant in cases in which the group changes in time and/or is subject to uncertainty. The approach followed here to find the ensuing classification is by means of a Collective Identity Function (CIF) that maps the set of opinions into a subset of N. Kasher and Rubinstein (Logique & Analyse, 160, 385–395 1997) characterized different CIFs axiomatically when |N| < ∞, in particular, the Liberal and Oligarchic aggregators. We show that in the infinite setting, the liberal result is still valid but the result no longer holds for the oligarchic case and give a characterization of all the aggregators satisfying the same axioms as the Oligarchic CIF. In our motivating examples, the solution obtained according to the alternative CIF is most cogent.
Palabras clave:
AGGREGATION GROUP IDENTIFICATION PROBLEM
,
INFINITE VOTERS
,
SOCIAL CHOICE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Fioravanti, Federico; Tohmé, Fernando Abel; Asking Infinite Voters ‘Who is a J?’: Group Identification Problems in ℕ; Springer; Journal Of Classification; 29-3-2019; 1-8
Compartir
Altmétricas