Mostrar el registro sencillo del ítem
dc.contributor.author
Pradolini, Gladis Guadalupe
dc.contributor.author
Recchi, Diana Jorgelina
dc.date.available
2019-12-23T16:49:17Z
dc.date.issued
2018-06
dc.identifier.citation
Pradolini, Gladis Guadalupe; Recchi, Diana Jorgelina; Welland's type inequalities for fractional operators of convolution with kernels satisfying a Hörmander type condition and their commutators; Taylor & Francis Ltd; Integral Transforms And Special Functions; 29; 8; 6-2018; 623-640
dc.identifier.issn
1065-2469
dc.identifier.uri
http://hdl.handle.net/11336/92752
dc.description.abstract
Let μ be a non-negative Ahlfors n-dimensional measure on Rd. In this context we shall consider convolution type operators Tαf = Kα ∗f, 0 <α< n, where the kernels Kα are supposed to satisfy certain size and regularity conditions. We prove Welland's type inequalities for the operator Tα and its commutator [b,Tα], with b ∈ BMO,that include the case Tα = Iα. As far as we know both estimates are new even in the case of the Lebesgue measure. We shall also give sufficient conditions on a pair of weights that guarantee the boundedness of [b, Tα] between two different weighted Lebesgue spaces when the underlying measure is Ahlfors n-dimensional.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AHLFORS MEASURE
dc.subject
WELLAND´S TYPE INEQUALITY
dc.subject
COMMUTATORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Welland's type inequalities for fractional operators of convolution with kernels satisfying a Hörmander type condition and their commutators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-12-20T21:11:20Z
dc.journal.volume
29
dc.journal.number
8
dc.journal.pagination
623-640
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.description.fil
Fil: Recchi, Diana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Integral Transforms And Special Functions
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/http://doi.org/10.1080/10652469.2018.1479852
Archivos asociados