Mostrar el registro sencillo del ítem
dc.contributor.author
Carando, Daniel Germán
dc.contributor.author
Galicer, Daniel Eric
dc.contributor.author
Muro, Luis Santiago Miguel
dc.contributor.author
Sevilla Peris, Pablo
dc.date.available
2019-12-20T21:22:45Z
dc.date.issued
2018-04
dc.identifier.citation
Carando, Daniel Germán; Galicer, Daniel Eric; Muro, Luis Santiago Miguel; Sevilla Peris, Pablo; Cluster values for algebras of analytic functions; Academic Press Inc Elsevier Science; Advances in Mathematics; 329; 4-2018; 157-173
dc.identifier.issn
0001-8708
dc.identifier.uri
http://hdl.handle.net/11336/92695
dc.description.abstract
The Cluster Value Theorem is known for being a weak version of the classical Corona Theorem. Given a Banach space X, we study the Cluster Value Problem for the ball algebra Au(BX), the Banach algebra of all uniformly continuous holomorphic functions on the unit ball BX; and also for the Fréchet algebra Hb(X) of holomorphic functions of bounded type on X (more generally, for Hb(U), the algebra of holomorphic functions of bounded type on a given balanced open subset U⊂X). We show that Cluster Value Theorems hold for all of these algebras whenever the dual of X has the bounded approximation property. These results are an important advance in this problem, since the validity of these theorems was known only for trivial cases (where the spectrum is formed only by evaluation functionals) and for the infinite dimensional Hilbert space. As a consequence, we obtain weak analytic Nullstellensatz theorems and several structural results for the spectrum of these algebras.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ANALYTIC FUNCTIONS OF BOUNDED TYPE
dc.subject
BALL ALGEBRA
dc.subject
CLUSTER VALUE PROBLEM
dc.subject
CORONA THEOREM
dc.subject
FIBER
dc.subject
SPECTRUM
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cluster values for algebras of analytic functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-17T14:55:38Z
dc.journal.volume
329
dc.journal.pagination
157-173
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Carando, Daniel. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Galicer, Daniel. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Sevilla-Peris, Pablo. Universidad Politécnica de Valencia; España
dc.journal.title
Advances in Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2017.08.030
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816312075
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1705.05697
Archivos asociados