Mostrar el registro sencillo del ítem
dc.contributor.author
Cabezas Sainz, Pablo
dc.contributor.author
Guerra-Varela, Jorge
dc.contributor.author
Carreira, María J.
dc.contributor.author
Mariscal, Javier
dc.contributor.author
Roel, María
dc.contributor.author
Rubiolo, Juan Andrés
dc.contributor.author
Sciara, Andres Angel
dc.contributor.author
Abal, Miguel
dc.contributor.author
Botana, Luis M.
dc.contributor.author
López, Rafael
dc.contributor.author
Sánchez, Laura
dc.date.available
2019-12-20T17:57:00Z
dc.date.issued
2018-01
dc.identifier.citation
Cabezas Sainz, Pablo; Guerra-Varela, Jorge; Carreira, María J.; Mariscal, Javier; Roel, María; et al.; Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool; BioMed Central; BMC Cancer; 18; 1; 1-2018; 1-12
dc.identifier.issn
1471-2407
dc.identifier.uri
http://hdl.handle.net/11336/92613
dc.description.abstract
Background: Zebrafish (Danio rerio) is a model organism that has emerged as a tool for cancer research, cancer being the second most common cause of death after cardiovascular disease for humans in the developed world. Zebrafish is a useful model for xenotransplantation of human cancer cells and toxicity studies of different chemotherapeutic compounds in vivo. Compared to the murine model, the zebrafish model is faster, can be screened using high-throughput methods and has a lower maintenance cost, making it possible and affordable to create personalized therapies. While several methods for cell proliferation determination based on image acquisition and quantification have been developed, some drawbacks still remain. In the xenotransplantation technique, quantification of cellular proliferation in vivo is critical to standardize the process for future preclinical applications of the model. Methods: This study improved the conditions of the xenotransplantation technique - quantification of cellular proliferation in vivo was performed through image processing with our ZFtool software and optimization of temperature in order to standardize the process for a future preclinical applications. ZFtool was developed to establish a base threshold that eliminates embryo auto-fluorescence and measures the area of marked cells (GFP) and the intensity of those cells to define a 'proliferation index'. Results: The analysis of tumor cell proliferation at different temperatures (34 °C and 36 °C) in comparison to in vitro cell proliferation provides of a better proliferation rate, achieved as expected at 36°, a maintenance temperature not demonstrated up to now. The mortality of the embryos remained between 5% and 15%. 5- Fluorouracil was tested for 2 days, dissolved in the incubation medium, in order to quantify the reduction of the tumor mass injected. In almost all of the embryos incubated at 36 °C and incubated with 5-Fluorouracil, there was a significant tumor cell reduction compared with the control group. This was not the case at 34 °C. Conclusions: Our results demonstrate that the proliferation of the injected cells is better at 36 °C and that this temperature is the most suitable for testing chemotherapeutic drugs like the 5-Fluorouracil.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
5-FU
dc.subject
CANCER
dc.subject
PROLIFERATION
dc.subject
TEMPERATURE
dc.subject
XENOGRAFT
dc.subject
ZEBRAFISH
dc.subject
ZFTOOL
dc.subject.classification
Tecnologías que involucran la manipulación de células, tejidos, órganos o todo el organismo
dc.subject.classification
Biotecnología de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-21T19:58:32Z
dc.journal.volume
18
dc.journal.number
1
dc.journal.pagination
1-12
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Cabezas-Sainz, Pablo. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Guerra-Varela, Jorge. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Carreira, María J.. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Mariscal, Javier. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Roel, María. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Rubiolo, Juan Andrés. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Sciara, Andres Angel. Universidad Nacional de Rosario; Argentina. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) - Facultad de Bioquímica y Ciencias Farmacéuticas, ; Argentina
dc.description.fil
Fil: Abal, Miguel. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Botana, Luis M.. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: López, Rafael. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Sánchez, Laura. Universidad de Santiago de Compostela; España
dc.journal.title
BMC Cancer
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmccancer.biomedcentral.com/articles/10.1186/s12885-017-3919-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s12885-017-3919-8
Archivos asociados