Mostrar el registro sencillo del ítem

dc.contributor.author
Cabezas Sainz, Pablo  
dc.contributor.author
Guerra-Varela, Jorge  
dc.contributor.author
Carreira, María J.  
dc.contributor.author
Mariscal, Javier  
dc.contributor.author
Roel, María  
dc.contributor.author
Rubiolo, Juan Andrés  
dc.contributor.author
Sciara, Andres Angel  
dc.contributor.author
Abal, Miguel  
dc.contributor.author
Botana, Luis M.  
dc.contributor.author
López, Rafael  
dc.contributor.author
Sánchez, Laura  
dc.date.available
2019-12-20T17:57:00Z  
dc.date.issued
2018-01  
dc.identifier.citation
Cabezas Sainz, Pablo; Guerra-Varela, Jorge; Carreira, María J.; Mariscal, Javier; Roel, María; et al.; Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool; BioMed Central; BMC Cancer; 18; 1; 1-2018; 1-12  
dc.identifier.issn
1471-2407  
dc.identifier.uri
http://hdl.handle.net/11336/92613  
dc.description.abstract
Background: Zebrafish (Danio rerio) is a model organism that has emerged as a tool for cancer research, cancer being the second most common cause of death after cardiovascular disease for humans in the developed world. Zebrafish is a useful model for xenotransplantation of human cancer cells and toxicity studies of different chemotherapeutic compounds in vivo. Compared to the murine model, the zebrafish model is faster, can be screened using high-throughput methods and has a lower maintenance cost, making it possible and affordable to create personalized therapies. While several methods for cell proliferation determination based on image acquisition and quantification have been developed, some drawbacks still remain. In the xenotransplantation technique, quantification of cellular proliferation in vivo is critical to standardize the process for future preclinical applications of the model. Methods: This study improved the conditions of the xenotransplantation technique - quantification of cellular proliferation in vivo was performed through image processing with our ZFtool software and optimization of temperature in order to standardize the process for a future preclinical applications. ZFtool was developed to establish a base threshold that eliminates embryo auto-fluorescence and measures the area of marked cells (GFP) and the intensity of those cells to define a 'proliferation index'. Results: The analysis of tumor cell proliferation at different temperatures (34 °C and 36 °C) in comparison to in vitro cell proliferation provides of a better proliferation rate, achieved as expected at 36°, a maintenance temperature not demonstrated up to now. The mortality of the embryos remained between 5% and 15%. 5- Fluorouracil was tested for 2 days, dissolved in the incubation medium, in order to quantify the reduction of the tumor mass injected. In almost all of the embryos incubated at 36 °C and incubated with 5-Fluorouracil, there was a significant tumor cell reduction compared with the control group. This was not the case at 34 °C. Conclusions: Our results demonstrate that the proliferation of the injected cells is better at 36 °C and that this temperature is the most suitable for testing chemotherapeutic drugs like the 5-Fluorouracil.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
5-FU  
dc.subject
CANCER  
dc.subject
PROLIFERATION  
dc.subject
TEMPERATURE  
dc.subject
XENOGRAFT  
dc.subject
ZEBRAFISH  
dc.subject
ZFTOOL  
dc.subject.classification
Tecnologías que involucran la manipulación de células, tejidos, órganos o todo el organismo  
dc.subject.classification
Biotecnología de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-21T19:58:32Z  
dc.journal.volume
18  
dc.journal.number
1  
dc.journal.pagination
1-12  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Cabezas-Sainz, Pablo. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Guerra-Varela, Jorge. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Carreira, María J.. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Mariscal, Javier. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Roel, María. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Rubiolo, Juan Andrés. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Sciara, Andres Angel. Universidad Nacional de Rosario; Argentina. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) - Facultad de Bioquímica y Ciencias Farmacéuticas, ; Argentina  
dc.description.fil
Fil: Abal, Miguel. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Botana, Luis M.. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: López, Rafael. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Sánchez, Laura. Universidad de Santiago de Compostela; España  
dc.journal.title
BMC Cancer  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmccancer.biomedcentral.com/articles/10.1186/s12885-017-3919-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s12885-017-3919-8