Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Models for the propensity score that contemplate the positivity assumption and their application to missing data and causality

Molina, Julieta; Sued, Raquel MarielaIcon ; Valdora, M.
Fecha de publicación: 06/2018
Editorial: John Wiley & Sons Ltd
Revista: Statistics In Medicine
ISSN: 0277-6715
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Generalized linear models are often assumed to fit propensity scores, which are used to compute inverse probability weighted (IPW) estimators. To derive the asymptotic properties of IPW estimators, the propensity score is supposed to be bounded away from zero. This condition is known in the literature as strict positivity (or positivity assumption), and, in practice, when it does not hold, IPW estimators are very unstable and have a large variability. Although strict positivity is often assumed, it is not upheld when some of the covariates are unbounded. In real data sets, a data-generating process that violates the positivity assumption may lead to wrong inference because of the inaccuracy in the estimations. In this work, we attempt to conciliate between the strict positivity condition and the theory of generalized linear models by incorporating an extra parameter, which results in an explicit lower bound for the propensity score. An additional parameter is added to fulfil the overlap assumption in the causal framework.
Palabras clave: AVERAGE TREATMENT EFFECT , INVERSE PROBABILITY WEIGHTING , MISSING DATA , OBSERVATIONAL STUDIES , POSITIVITY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 340.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/92574
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7827
DOI: http://dx.doi.org/10.1002/sim.7827
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Molina, Julieta; Sued, Raquel Mariela; Valdora, M.; Models for the propensity score that contemplate the positivity assumption and their application to missing data and causality; John Wiley & Sons Ltd; Statistics In Medicine; 37; 24; 6-2018; 3503-3518
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES