Mostrar el registro sencillo del ítem

dc.contributor.author
Cornejo, Juan Manuel  
dc.contributor.author
Sankappanavar, Hanamantagouda P.  
dc.date.available
2019-12-10T17:29:42Z  
dc.date.issued
2018-08  
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Identities of Associative Type; Institute of Mathematics of the Moldovian Academy of Sciences; Quasigroups and Related Systems; 26; 1; 8-2018; 13-34  
dc.identifier.issn
1561-2848  
dc.identifier.uri
http://hdl.handle.net/11336/91905  
dc.description.abstract
An algebra A=⟨A,→,0⟩, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x→y)→z≈[(z′→x)→(y→z)′]′ and 0′′≈0, where x′:=x→0, and I denotes the variety of all I-zroupoids. An I-zroupoid is symmetric if it satisfies x′′≈x and (x→y′)′≈(y→x′)′. The variety of symmetric I-zroupoids is denoted by S. An identity p≈q, in the groupoid language ⟨→⟩, is called an identity of associative type of length 3 if p and q have exactly 3 (distinct) variables, say x,y,z, and are grouped according to one of the two ways of grouping: (1) ⋆→(⋆→⋆) and (2) (⋆→⋆)→⋆, where ⋆ is a place holder for a variable. A subvariety of I is said to be of associative type of length 3, if it is defined, relative to I, by a single identity of associative type of length 3. In this paper we give a complete analysis of the mutual relationships of all subvarieties of I of associative type of length 3. We prove, in our main theorem, that there are exactly 8 such subvarieties of I that are distinct from each other and describe explicitly the poset formed by them under inclusion. As an application of the main theorem, we derive that there are three distinct subvarieties of the variety S, each defined, relative to S, by a single identity of associative type of length 3.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Mathematics of the Moldovian Academy of Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IMPLICATION ZRUPOID  
dc.subject
VARIETY  
dc.subject
IDENTITY OF ASSOCIATIVE TYPE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Implication Zroupoids and Identities of Associative Type  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-09T14:17:05Z  
dc.journal.volume
26  
dc.journal.number
1  
dc.journal.pagination
13-34  
dc.journal.pais
Polonia  
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos  
dc.journal.title
Quasigroups and Related Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1710.10559  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.math.md/en/publications/qrs/issues/v26-n1/