Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning effective state-feedback controllers through efficient multilevel importance samplers

Menchón, Silvia AdrianaIcon ; Kappen, Hilbert Johan
Fecha de publicación: 21/12/2019
Editorial: Taylor & Francis Ltd
Revista: International Journal Of Control
ISSN: 0020-7179
e-ISSN: 1366-5820
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Monte Carlo sampling can be used to estimate the solution of path integral control problems, which are a restricted class of nonlinear control problems with arbitrary dynamics and state cost, but with a linear dependence of the control on the dynamics and quadratic control cost. Although importance sampling is used to improve numerical computations, the effective sample size may still be low or many samples could be required. In this work, we propose a method to learn effective state-feedback controllers for nonlinear stochastic control problems based on multilevel importance samplers. In particular, we focus on the question of how to compute effective importance samplers considering a multigrid scenario. We test our algorithm in finite horizon control problems based on Lorenz-96 model with chaotic and non-chaotic behaviour, showing, in all cases, that our multigrid implementation reduces the computational time and improves the effective sample size.
Palabras clave: IMPORTANCE SAMPLING , MULTILEVEL MONTE CARLO METHOD , PATH INTEGRAL CONTROL PROBLEMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 985.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/91650
DOI: https://doi.org/10.1080/00207179.2018.1459857
URL: https://www.tandfonline.com/doi/full/10.1080/00207179.2018.1459857
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Menchón, Silvia Adriana; Kappen, Hilbert Johan; Learning effective state-feedback controllers through efficient multilevel importance samplers; Taylor & Francis Ltd; International Journal Of Control; 92; 12; 21-12-2019; 2776-2783
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES