Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An Evolutionary Algorithm for Automatic Recommendation of Clustering Methods and its Parameters

Carballido, Jessica AndreaIcon ; Latini, Macarena Anahí; Ponzoni, IgnacioIcon ; Cecchini, Rocío LujánIcon
Fecha de publicación: 08/2018
Editorial: Elsevier
Revista: Electronic Notes in Discrete Mathematics
ISSN: 1571-0653
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

One of the main problems being faced at the time of performing data clustering consists in the deteremination of the best clustering method together with defining the ideal amount (k) of groups in which these data should be separated. In this paper, a preliminary approximation of a clustering recommender method is presented which, starting from a set of standardized data, suggests the best clustering strategy and also proposes an advisable k value. For this aim, the algorithm considers four indices for evaluating the final structure of clusters: Dunn, Silhouette, Widest Gap and Entropy. The prototype is implemented as a Genetic Algorithm in which individuals are possible configurations of the methods and their parameters. In this first prototype, the algorithm suggests between four partitioning methods namely K-means, PAM, CLARA and, Fanny. Also, the best set of parameters to execute the suggested method is obtained. The prototype was developed in an R environment, and its findings could be corroborated as consistent when compared with a combination of results provided by other methods with similar objectives. The idea of this prototype is to serve as the initial basis for a more complex framework that also incorporates the reduction of matrices with vast numbers of rows.
Palabras clave: CLUSTERING RECOMMENDATION METHODS , EVOLUTIONARY ALGORITHMS , PARTITION CLUSTERING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 232.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/91533
URL: https://www.sciencedirect.com/science/article/pii/S1571065318301744
DOI: http://dx.doi.org/10.1016/j.endm.2018.07.030
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Carballido, Jessica Andrea; Latini, Macarena Anahí; Ponzoni, Ignacio; Cecchini, Rocío Luján; An Evolutionary Algorithm for Automatic Recommendation of Clustering Methods and its Parameters; Elsevier; Electronic Notes in Discrete Mathematics; 69; 8-2018; 229-236
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES