Mostrar el registro sencillo del ítem

dc.contributor.author
Barbero Liñán, María  
dc.contributor.author
Farré Puiggalí, Marta  
dc.contributor.author
Ferraro, Sebastián José  
dc.contributor.author
Martin de Diego, David  
dc.date.available
2019-12-05T17:59:57Z  
dc.date.issued
2018-04-09  
dc.identifier.citation
Barbero Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián José; Martin de Diego, David; The inverse problem of the calculus of variations for discrete systems; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 51; 18; 9-4-2018; 1-39; 185202  
dc.identifier.issn
1751-8113  
dc.identifier.uri
http://hdl.handle.net/11336/91505  
dc.description.abstract
We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DISCRETE SECOND ORDER DIFFERENCE EQUATIONS  
dc.subject
DISCRETE VARIATIONAL CALCULUS  
dc.subject
INVERSE PROBLEM  
dc.subject
NONHOLONOMIC MECHANICS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The inverse problem of the calculus of variations for discrete systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-22T18:02:19Z  
dc.journal.volume
51  
dc.journal.number
18  
dc.journal.pagination
1-39; 185202  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Barbero Liñán, María. Instituto de Ciencias Matemáticas; España. Universidad Politécnica de Madrid; España  
dc.description.fil
Fil: Farré Puiggalí, Marta. Instituto de Ciencias Matemáticas; España  
dc.description.fil
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España  
dc.journal.title
Journal of Physics A: Mathematical and Theoretical  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8121/aab546/meta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1751-8121/aab546  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1708.04123