Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Abstract Mechanisms and Neural Computation

Wajnerman Paz, AbelIcon
Fecha de publicación: 03/2016
Editorial: Seoul National University. Institute for Cognitive Science
Revista: Journal of Cognitive Science
ISSN: 1976-6939
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Filosofía, Historia y Filosofía de la Ciencia y la Tecnología

Resumen

A characterization of computation and computational explanation is important in accounting for the explanatory power of many models in cognitive neuroscience. Piccinini (2015) describes computational models as both abstract and mechanistic. This approach stands in contrast to a usual way of understanding mechanism which implies that explanation is impoverished by abstraction. I argue that in order to provide a useful account of computational explanation in cognitive neuroscience, Piccininiʼs proposal must be complemented by an abstraction criterion that fulfills two conditions: motivating abstractions enough to make a model computational and not motivating the omission of information that is constitutive of mechanistic explanation. These conditions are relevant because although there are computational and mechanistic descriptions of neural processes (Piccinini & Bahar 2013) mechanism must, as a normative theory, determine whether the abstractions that these models involve are well motivated. I argue that the abstraction criterion proposed by Levy and Bechtel (2013) is a promising candidate to fulfill these requirements. First, I show that this criterion can legitimize the omission from recently proposed neurocognitive models of all features that are non-computational according to Piccinini?s approach (although it also motivates some modifications of his characterization of neural computation). Second, I argue that this criterion legitimizes those models only if we interpret them as including all the information constitutive of mechanistic explanation.
Palabras clave: ABSTRACTION , MECHANISM , COMPUTATIONAL EXPLANATION , CANONICAL NEURAL COMPUTATIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 537.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/91193
URL: http://cogsci.snu.ac.kr/jcs/index.php/issues/?pageid=2&uid=199&mod=document
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Wajnerman Paz, Abel; Abstract Mechanisms and Neural Computation; Seoul National University. Institute for Cognitive Science; Journal of Cognitive Science; 17; 1; 3-2016; 1-26
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES