Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms

Corbellini, AlejandroIcon ; Godoy, Daniela LisIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Schiaffino, Silvia NoemiIcon ; Zunino Suarez, Alejandro OctavioIcon
Fecha de publicación: 01/2018
Editorial: Elsevier Science
Revista: Future Generation Computer Systems
ISSN: 0167-739X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Large-scale graphs have become ubiquitous in social media. Computer-based recommendations in these huge graphs pose challenges in terms of algorithm design and resource usage efficiency when processing recommendations in distributed computing environments. Moreover, recommendation algorithms for graphs, particularly link prediction algorithms, have different requirements depending of the way the underlying graph is traversed. Path-based algorithms usually perform traversals in different directions to build a large ranking of vertices to recommend, whereas random walk-based algorithms build an initial subgraph and perform several iterations on those vertices to compute the final ranking. In this work, we propose a distributed graph processing framework called Distributed Partitioned Merge (DPM), which supports both types of algorithms and we compare its performance and resource usage w.r.t. two relevant frameworks, namely Fork-Join and Pregel. In our experiments, we show that in most tests DPM outperforms both Pregel and Fork-Join in terms of recommendation time, with a minor penalization in network usage in some scenarios.
Palabras clave: DISTRIBUTED GRAPH PROCESSING , ONLINE SOCIAL NETWORKS , RECOMMENDATION ALGORITHMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 873.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/91017
DOI: https://doi.org/10.1016/j.future.2017.02.025
URL: https://www.sciencedirect.com/science/article/pii/S0167739X17302352
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Corbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Schiaffino, Silvia Noemi; Zunino Suarez, Alejandro Octavio; DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms; Elsevier Science; Future Generation Computer Systems; 78; 1-2018; 474-480
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES