Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Influence me! Predicting links to influential users

Monteserin, Ariel JoséIcon ; Armentano, Marcelo GabrielIcon
Fecha de publicación: 04/2019
Editorial: Springer
Revista: Information Retrieval
ISSN: 1386-4564
e-ISSN: 1573-7659
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In addition to being in contact with friends, online social networks are commonly used as a source of information, suggestions and recommendations from members of the community. Whenever we accept a suggestion or perform any action because it was recommended by a “friend”, we are being influenced by him/her. For this reason, it is useful for users seeking for interesting information to identify and connect to this kind of influential users. In this context, we propose an approach to predict links to influential users. Compared to approaches that identify general influential users in a network, our approach seeks to identify users who might have some kind of influence to individual (target) users. To carry out this goal, we adapted an influence maximization algorithm to find new influential users from the set of current influential users of the target user. Moreover, we compared the results obtained with different metrics for link prediction and analyzed in which context these metrics obtained better results.
Palabras clave: LINK PREDICTION , SOCIAL INFLUENCE , SOCIAL NETWORKS
Ver el registro completo
 
Archivos asociados
Tamaño: 687.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/90993
URL: https://link.springer.com/article/10.1007%2Fs10791-018-9335-0
DOI: http://dx.doi.org/10.1007/s10791-018-9335-0
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Monteserin, Ariel José; Armentano, Marcelo Gabriel; Influence me! Predicting links to influential users; Springer; Information Retrieval; 22; 1-2; 4-2019; 32-54
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES