Artículo
Absolute continuity of self-similar measures, their projections and convolutions
Fecha de publicación:
07/2016
Editorial:
American Mathematical Society
Revista:
Transactions Of The American Mathematical Society
ISSN:
0002-9947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that in many parametrized families of self-similar measures, their projections, and their convolutions, the set of parameters for which the measure fails to be absolutely continuous is very small—of co-dimension at least 1 in parameter space. This complements an active line of research concerning similar questions for dimension. Moreover, we establish some regularity of the density outside this small exceptional set, which applies in particular to Bernoulli convolutions; along the way, we prove some new results about the dimensions of self-similar measures and the absolute continuity of the convolution of two measures. As a concrete application, we obtain a very strong version of Marstrand’s projection theorem for planar self-similar sets.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Shmerkin, Pablo Sebastian; Solomyak, Boris; Absolute continuity of self-similar measures, their projections and convolutions; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 7; 7-2016; 5125-5151
Compartir
Altmétricas