Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Seed-per-pod estimation for plant breeding using deep learning

Uzal, Lucas CésarIcon ; Grinblat, Guillermo LuisIcon ; Namias, RafaelIcon ; Larese, Monica GracielaIcon ; Bianchi, Julieta SofiaIcon ; Morandi, Eligio NatalioIcon ; Granitto, Pablo MiguelIcon
Fecha de publicación: 07/2018
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Commercial and scientific plant breeding programs require the phenotyping of large populations. Phenotyping is typically a manual task (costly, time-consuming and sometimes arbitrary). The use of computer vision techniques is a potential solution to some of these specific tasks. In the last years, Deep Learning, and in particular Convolutional Neural Networks (CNNs), have shown a number of advantages over traditional methods in the area. In this work we introduce a computer vision method that estimates the number of seeds into soybean pods, a difficult task that usually requires the intervention of human experts. To this end we developed a classic approach, based on tailored features extraction (FE) followed by a Support Vector Machines (SVM) classification model, and also the referred CNNs. We show how standard CNNs can be easily configured and how a simple method can be used to visualize the key features learned by the model in order to infer the correct class. We processed different seasons batches with both methods obtaining 50.4% (FE + SVM) and 86.2% (CNN) of accuracy in test, highlighting the particularly high increase in generalization capabilities of a deep learning approach over a classic machine vision approach in this task. Dataset and code are publicly available.
Palabras clave: DEEP LEARNING , MACHINE VISION , PLANT BREEDING PROGRAMS , PLANT PHENOTYPING , SOYBEAN
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.028Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/90566
URL: https://www.sciencedirect.com/science/article/pii/S016816991731582X
DOI: http://dx.doi.org/10.1016/j.compag.2018.04.024
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos(IICAR)
Articulos de INST. DE INVESTIGACIONES EN CIENCIAS AGRARIAS DE ROSARIO
Citación
Uzal, Lucas César; Grinblat, Guillermo Luis; Namias, Rafael; Larese, Monica Graciela; Bianchi, Julieta Sofia; et al.; Seed-per-pod estimation for plant breeding using deep learning; Elsevier; Computers and Eletronics in Agriculture; 150; 7-2018; 196-204
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES