Artículo
Most discriminative atom selection for apnea-hypopnea events detection
Fecha de publicación:
01/2015
Editorial:
Springer Verlag
Revista:
Ifmbe Proceedings
ISSN:
1680-0737
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The sleep apnea-hypopnea syndrome is characterized by repetitive episodes of upper airway obstruction that occur while sleeping, usually associated with a reduction in blood oxygen saturation (SaO2). This work presents a novel most discriminative atom selection method to predict the occurrence of apnea-hypopnea (AH) events. First two types of dictionaries (one using class information and the other without it) are estimated, then a greedy pursuit algorithm is used in order to obtain the activation coefficients. The SHHS polysomnography database which includes nearly 1000 polysomnograms, is used for training and testing. A subset of the most discriminative coefficients is then selected for each dictionary, training a pattern recognition neural network to detect the AH events. Finally these events from a test set of 64 studies with different grades of illness are detected. Correlation coefficients of 0.90 and 0.74 are obtained for the dictionaries trained with and without class information, respectively.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Rolon, Roman Emanuel; Di Persia, L.E.; Rufiner, Hugo Leonardo; Spies, Ruben Daniel; Most discriminative atom selection for apnea-hypopnea events detection; Springer Verlag; Ifmbe Proceedings; 49; 1-2015; 572-575
Compartir
Altmétricas