Mostrar el registro sencillo del ítem

dc.contributor.author
Sui, Tianju  
dc.contributor.author
Marelli, Damian Edgardo  
dc.contributor.author
Fu, Minyue  
dc.contributor.author
Lu, Renquan  
dc.date.available
2019-11-25T22:14:49Z  
dc.date.issued
2018-11  
dc.identifier.citation
Sui, Tianju; Marelli, Damian Edgardo; Fu, Minyue; Lu, Renquan; Accuracy analysis for distributed weighted least-squares estimation in finite steps and loopy networks; Pergamon-Elsevier Science Ltd; Automatica; 97; 11-2018; 82-91  
dc.identifier.issn
0005-1098  
dc.identifier.uri
http://hdl.handle.net/11336/90395  
dc.description.abstract
Distributed parameter estimation for large-scale systems is an active research problem. The goal is to derive a distributed algorithm in which each agent obtains a local estimate of its own subset of the global parameter vector, based on local measurements as well as information received from its neighbors. A recent algorithm has been proposed, which yields the optimal solution (i.e., the one that would be obtained using a centralized method) in finite time, provided the communication network forms an acyclic graph. If instead, the graph is cyclic, the only available alternative algorithm, which is based on iterative matrix inversion, achieving the optimal solution, does so asymptotically. However, it is also known that, in the cyclic case, the algorithm designed for acyclic graphs produces a solution which, although non optimal, is highly accurate. In this paper we do a theoretical study of the accuracy of this algorithm, in communication networks forming cyclic graphs. To this end, we provide bounds for the sub-optimality of the estimation error and the estimation error covariance, for a class of systems whose topological sparsity and signal-to-noise ratio satisfy certain condition. Our results show that, at each node, the accuracy improves exponentially with the so-called loop-free depth. Also, although the algorithm no longer converges in finite time in the case of cyclic graphs, simulation results show that the convergence is significantly faster than that of methods based on iterative matrix inversion. Our results suggest that, depending on the loop-free depth, the studied algorithm may be the preferred option even in applications with cyclic communication graphs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
CONVERGENCE RATE  
dc.subject
DISTRIBUTED STATISTICAL ESTIMATION  
dc.subject
WEIGHTED LEAST SQUARES  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Accuracy analysis for distributed weighted least-squares estimation in finite steps and loopy networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-17T14:56:05Z  
dc.journal.volume
97  
dc.journal.pagination
82-91  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sui, Tianju. Dalian University of Technology; China  
dc.description.fil
Fil: Marelli, Damian Edgardo. Guandong University of Technology; China. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Fu, Minyue. Guandong University of Technology; China. Universidad de Newcastle; Australia  
dc.description.fil
Fil: Lu, Renquan. Guandong University of Technology; China  
dc.journal.title
Automatica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.automatica.2018.07.016  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S000510981830373X