Artículo
On distinguished orbits of reductive representations
Fecha de publicación:
12/2013
Editorial:
Elsevier
Revista:
Journal Of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be a real reductive Lie group and let τ : G −→ GL(V ) be a real reductive representation of G with (restricted) moment map mg : V {0} −→ g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished (i.e. it contains a critical point of the norm squared of mg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin– Sternberg in our particular case and we use it to give an easyto-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevsky’s nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ . Finally, some applications to ternary forms are presented.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Fernández Culma, Edison Alberto; On distinguished orbits of reductive representations; Elsevier; Journal Of Algebra; 396; 12-2013; 61-81
Compartir
Altmétricas