Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Jorge Ruben  
dc.date.available
2016-12-07T16:30:35Z  
dc.date.issued
2013-03  
dc.identifier.citation
Lauret, Jorge Ruben; Ricci flow of homogeneous manifolds; Springer; Mathematische Zeitschrift; 274; 1-2; 3-2013; 373-403  
dc.identifier.issn
0025-5874  
dc.identifier.uri
http://hdl.handle.net/11336/8988  
dc.description.abstract
We present in this paper a general approach to study the Ricci flow on homogeneous manifolds. Our main tool is a dynamical system defined on a subset Hq,n of the variety of (q+n)-dimensional Lie algebras, parameterizing the space of all simply connected homogeneous spaces of dimension n with a q-dimensional isotropy, which is proved to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visualize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as well as to determine the type of the possible singularities. Ancient solutions arise naturally from the qualitative analysis of the evolution equation. We develop two examples in detail: a 2-parameter subspace of H1,3 reaching most of 3-dimensional geometries, and a 2-parameter family in H0,n of left-invariant metrics on n-dimensional compact and non-compact semisimple Lie groups.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ricci Flow  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Ricci flow of homogeneous manifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-11-25T14:00:37Z  
dc.journal.volume
274  
dc.journal.number
1-2  
dc.journal.pagination
373-403  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina  
dc.journal.title
Mathematische Zeitschrift  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-012-1075-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00209-012-1075-z