Artículo
Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues
Fecha de publicación:
01/2018
Editorial:
Texas State University, Department of Mathematics
Revista:
Electronic Journal of Differential Equations
ISSN:
1072-6691
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.
Palabras clave:
∞−eigenvalues estimates
,
∞−eigenvalue problem
,
approximation of domains
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2018; 7; 1-2018; 1-9
Compartir