Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues

Da Silva, Joao VitorIcon ; Rossi, Julio DanielIcon ; Salort, Ariel MartinIcon
Fecha de publicación: 01/2018
Editorial: Texas State University, Department of Mathematics
Revista: Electronic Journal of Differential Equations
ISSN: 1072-6691
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this note we analyze how perturbations of a ball Br ⊂ Rn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞−eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In fact, we show that, if |λ D 1,∞(Ω) − λ D 1,∞(Br)| = δ1 and |λ N 1,∞(Ω) − λ N 1,∞(Br)| = δ2, then there are two balls such that B r δ1r+1 ⊂ Ω ⊂ B r+δ2r 1−δ2r . In addition, we also obtain a result concerning stability of the Dirichlet ∞−eigenfunctions.
Palabras clave: ∞−eigenvalues estimates , ∞−eigenvalue problem , approximation of domains
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 322.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/89737
URL: https://ejde.math.txstate.edu/Volumes/2018/07/abstr.html
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Da Silva, Joao Vitor; Rossi, Julio Daniel; Salort, Ariel Martin; Uniform stability of the ball with respect to the first Dirichlet and Neumann infinity-eigenvalues; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2018; 7; 1-2018; 1-9
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES