Artículo
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case
Fecha de publicación:
09/2018
Editorial:
Society for Industrial and Applied Mathematics
Revista:
Siam Journal On Mathematical Analysis
ISSN:
0036-1410
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider the porous medium equation in an exterior two-dimensional domain that excludes a hole, with zero Dirichlet data on its boundary. Gilding and Goncerzewicz proved in 2007 that in the far-field scale, which is the adequate one to describe the movement of the free boundary, solutions to this problem with integrable and compactly supported initial data behave as an instantaneous point-source solution for the equation with a variable mass that decays to 0 in a precise way, determined by the initial data and the hole. In this paper, starting from their result in the far field, we study the large time behavior in the near field, in scales that evolve more slowly than the free boundary. In this way we get, in particular, the final profile and decay rate on compact sets. Spatial dimension two is critical for this problem, and involves logarithmic corrections.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 50; 3; 9-2018; 2664-2680
Compartir
Altmétricas