Mostrar el registro sencillo del ítem
dc.contributor.author
Santos, Juan Enrique
dc.contributor.author
Martinez Corredor, Robiel
dc.contributor.author
Carcione, Jose M.
dc.date.available
2019-11-20T23:00:18Z
dc.date.issued
2014-04
dc.identifier.citation
Santos, Juan Enrique; Martinez Corredor, Robiel; Carcione, Jose M.; Seismic velocity and Q anisotropy in fractured poroelastic media; Pergamon-Elsevier Science Ltd; International Journal Of Rock Mechanics And Mining Sciences; 70; 4-2014; 212-218
dc.identifier.issn
1365-1609
dc.identifier.uri
http://hdl.handle.net/11336/89347
dc.description.abstract
A fluid-saturated poroelastic isotropic medium with aligned fractures behaves as a transversely isotropic and viscoelastic (TIV) medium when the predominant wavelength is much larger than the average distance between fractures. A planar fracture embedded in a fluid saturated poroelastic background medium can be modeled as a extremely thin and compliant porous layer. P-waves traveling in this type of medium induce fluid-pressure gradients at fractures and mesoscopic-scale heterogeneities, generating fluid flow and slow (diffusion) Biot waves, causing attenuation and dispersion of the fast modes (mesoscopic loss). A poroelastic medium with embedded aligned fractures exhibits significant attenuation and dispersion effects due to this mechanism, which can properly be represented at the macroscale with an equivalent TIV medium. In this work, we apply a set of compressibility and shear harmonic finite-element (FE) experiments on fractured highly heterogeneous poroelastic samples to determine the five complex and frequency dependent stiffnesses characterizing the equivalent medium. The experiments consider brine or patchy brine-CO2 saturated samples and a brine saturated sample with a heterogeneous (fractal) skeleton with fractures. We show that fractures induce strong seismic velocity and Q anisotropy, both for qP and qSV waves, enhanced either by patchy saturation or frame heterogeneity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANISOTROPY
dc.subject
ATTENUATION
dc.subject
FINITE ELEMENTS
dc.subject
FRACTURES
dc.subject
POROELASTICITY
dc.subject
VELOCITY DISPERSION
dc.subject.classification
Geociencias multidisciplinaria
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Seismic velocity and Q anisotropy in fractured poroelastic media
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-10-28T14:30:54Z
dc.journal.volume
70
dc.journal.pagination
212-218
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Purdue University; Estados Unidos. Universidad Nacional de La Plata; Argentina
dc.description.fil
Fil: Martinez Corredor, Robiel. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Carcione, Jose M.. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
dc.journal.title
International Journal Of Rock Mechanics And Mining Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ijrmms.2014.05.004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1365160914001269
Archivos asociados