Artículo
A family of non-parametric density estimation algorithms
Fecha de publicación:
02/2013
Editorial:
Wiley
Revista:
Communications On Pure And Applied Mathematics
ISSN:
0010-3640
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A new methodology for density estimation is proposed. The method- ology, which builds on the one developed in [15], normalizes the data points through the composition of simple maps. The parameters of each map are determined through the maximization of a local quadratic approximation to the log-likelihood. Various candidates for the el- ementary maps of each step are proposed; criteria for choosing one includes robustness, computational simplicity and good behavior in high-dimensional settings. A good choice is that of localized radial expansions, which depend on a single parameter: all the complex- ity of arbitrary, possibly convoluted probability densities can be built through the composition of such simple maps.
Palabras clave:
Density Estimation
,
Clustering
,
Non Parametric Statistic
,
Flux Algorithm
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Tabak, E. G. ; Turner, Cristina Vilma; A family of non-parametric density estimation algorithms; Wiley; Communications On Pure And Applied Mathematics; 62; 2; 2-2013; 145-164
Compartir
Altmétricas