Mostrar el registro sencillo del ítem

dc.contributor.author
Díaz Martín, Rocío Patricia  
dc.contributor.author
Levstein, Fernando  
dc.date.available
2019-11-20T17:59:33Z  
dc.date.issued
2018-04  
dc.identifier.citation
Díaz Martín, Rocío Patricia; Levstein, Fernando; Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group; Springer Wien; Monatshefete Fur Mathematik; 185; 4; 4-2018; 621-649  
dc.identifier.issn
0026-9255  
dc.identifier.uri
http://hdl.handle.net/11336/89299  
dc.description.abstract
We consider R3 as a homogeneous manifold for the action of the motion group given by rotations and translations. For an arbitrary τ∈ SO(3) ^ , let Eτ be the homogeneous vector bundle over R3 associated with τ. An interesting problem consists in studying the set of bounded linear operators over the sections of Eτ that are invariant under the action of SO(3) ⋉ R3. Such operators are in correspondence with the End(Vτ) -valued, bi-τ-equivariant, integrable functions on R3 and they form a commutative algebra with the convolution product. We develop the spherical analysis on that algebra, explicitly computing the τ-spherical functions. We first present a set of generators of the algebra of SO(3) ⋉ R3-invariant differential operators non Eτ. We also give an explicit form for the τ-spherical Fourier transform, we deduce an inversion formula and we use it to give a characterization of End(Vτ) -valued, bi-τ-equivariant, functions on R3.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Wien  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HARMONIC ANALYSIS  
dc.subject
MATRIX SPHERICAL FUNCTIONS  
dc.subject
SPHERICAL TRANSFORMS  
dc.subject
STRONG GELFAND PAIRS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spherical analysis on homogeneous vector bundles of the 3-dimensional euclidean motion group  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-10T19:02:38Z  
dc.identifier.eissn
1436-5081  
dc.journal.volume
185  
dc.journal.number
4  
dc.journal.pagination
621-649  
dc.journal.pais
Austria  
dc.journal.ciudad
Viena  
dc.description.fil
Fil: Díaz Martín, Rocío Patricia. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Levstein, Fernando. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Monatshefete Fur Mathematik  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00605-017-1123-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00605-017-1123-1