Artículo
Some bivariate stochastic models arising from group representation theory
Fecha de publicación:
10/2018
Editorial:
Elsevier Science
Revista:
Stochastic Processes And Their Applications
ISSN:
0304-4149
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this paper is to study some continuous-time bivariate Markov processes arising from group representation theory. The first component (level) can be either discrete (quasi-birth-and-death processes) or continuous (switching diffusion processes), while the second component (phase) will always be discrete and finite. The infinitesimal operators of these processes will be now matrix-valued (either a block tridiagonal matrix or a matrix-valued second-order differential operator). The matrix-valued spherical functions associated to the compact symmetric pair (SU(2)×SU(2),diagSU(2)) will be eigenfunctions of these infinitesimal operators, so we can perform spectral analysis and study directly some probabilistic aspects of these processes. Among the models we study there will be rational extensions of the one-server queue and Wright–Fisher models involving only mutation effects.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
de la Iglesia, Manuel D.; Román, Pablo Manuel; Some bivariate stochastic models arising from group representation theory; Elsevier Science; Stochastic Processes And Their Applications; 128; 10; 10-2018; 3300-3326
Compartir
Altmétricas