Mostrar el registro sencillo del ítem

dc.contributor.author
Britos, Grisel Maribel  
dc.contributor.author
Ojeda, Silvia María  
dc.date.available
2019-11-20T16:37:23Z  
dc.date.issued
2019-09  
dc.identifier.citation
Britos, Grisel Maribel; Ojeda, Silvia María; Robust estimation for spatial autoregressive processes based on bounded innovation propagation representations; Springer Heidelberg; Computational Statistics (zeitschrift); 34; 3; 9-2019; 1315-1335  
dc.identifier.issn
0943-4062  
dc.identifier.uri
http://hdl.handle.net/11336/89287  
dc.description.abstract
Robust methods have been a successful approach for dealing with contamination and noise in the context of spatial statistics and, in particular, in image processing. In this paper, we introduce a new robust method for spatial autoregressive models. Our method, called BMM-2D, relies on representing a two-dimensional autoregressive process with an auxiliary model to attenuate the effect of contamination (outliers). We compare the performance of our method with existing robust estimators and the least squares estimator via a comprehensive Monte Carlo simulation study, which considers different levels of replacement contamination and window sizes. The results show that the new estimator is superior to the other estimators, both in accuracy and precision. An application to image filtering highlights the findings and illustrates how the estimator works in practical applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AR-2D MODELS  
dc.subject
ROBUST ESTIMATORS  
dc.subject
IMAGE PROCESSING  
dc.subject
SPACIAL MODELS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust estimation for spatial autoregressive processes based on bounded innovation propagation representations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-10-10T19:02:56Z  
dc.identifier.eissn
1613-9658  
dc.journal.volume
34  
dc.journal.number
3  
dc.journal.pagination
1315-1335  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Britos, Grisel Maribel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Ojeda, Silvia María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Computational Statistics (zeitschrift)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00180-018-0845-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00180-018-0845-4